Master-Thesis

TECHNISCHE
HOCHSCHULE
LUBECK

Vergleichende Analyse von Retrieval-Augmented

Generation (RAG) Methoden: Embedding- vs.

Volltext-basierte Ansatze

Submitted by:

Department:

Degree program:

First examiner:

Issue Date:

Submission Date:

Konrad Langenberg

Elektrotechnik und Informatik

Informatik / Softwaretechnik fiir verteilte Systeme

Prof. Dr.-Ing. Max Zimmermann

14th July 2025
14th January 2026

Task description

Retrieval-Augmented Generation (RAG) hat sich als vielversprechender Ansatz zur
Verbesserung der Leistung von Large Language Models (LLMs) durch Integration externer Wis-
sensquellen etabliert. Klassische RAG-Implementierungen nutzen dafiir Vektor-Datenbanken
und Embeddings fiir den semantischen Zusammenhang von Frage und Antwort, um Inhalte
moglicher Antworten im zweiten Schritt an ein LLM zur Generierung der Antwort zu {ibergeben.
Die Erstellung dieser Embeddings ist im Vergleich zu klassischen Datenbank-Indizes relativ
aufwéandig und ressourcenintensiv. Das Verfahren hat sich aber in der Praxis durchgesetzt, da
es wesentlich effizienter als Finetuning ist.

Alternative Ansitze, wie die Nutzung von etablierten Methoden der Volltext-Suche, kénnten
diesen Prozess vereinfachen. Bislang fehlen jedoch eine systematische Untersuchung und ein
Vergleich dieser unterschiedlichen Anséitze.

In der Masterarbeit soll die Hypothese untersucht werden, dass Volltext-such-basierte RAG-
Ansétze in bestimmten Anwendungsfillen eine vergleichbare Leistung zu Embedding-basierten
Methoden erzielen kénnen, bei gleichzeitig geringerem Implementierungsaufwand.

Zur Beantwortung der Hypothese soll ein Benchmark, der verschiedene RAG-Varianten (e.g.
mit und ohne Embeddings, verschiedene Suchstrategien etc.) vergleicht, durchgefiithrt werden.
Die unterschiedlichen RAG-Implementierung werden gezielt evaluiert und anhand geeigneter

Kriterien ausgewertet.

TECHNISCHE
HOCHSCHULE

Eigenstandigkeitserklarung HIBECK

Declaration of Originality

Langenberg, Konrad 367536

Name, Vorname Matrikelnummer
Last name, first name Matriculation number

Ich versichere hiermit, dass ich die vorliegende
| hereby declare that this

O Hausarbeit O Bachelorarbeit X Masterarbeit
term paper bachelor’s thesis master’s thesis

mit dem Titel
with the title

Vergleichende Analyse von Retrieval-Augmented Generation (RAG) Methoden

eigenstindig und ohne unerlaubte fremde Hilfe angefertigt habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet und Entlehnungen aus anderen
Arbeiten kenntlich gemacht. Fiir den Fall, dass die Arbeit zusétzlich elektronisch und/ oder
digital eingereicht wird, erklédre ich, dass die schriftliche und die elektronische und/ oder
digitale Form identisch sind. Die Arbeit hat in gleicher oder ahnlicher Form noch keiner
Priifungsbehorde vorgelegen.

is my own original work and any assistance from third parties has been acknowledged. | have clearly indicated and acknowl-
edged all sources and resources as well as any borrowings from other works. In case of an additional electronic and/or digi-
tal submission of this work, | declare that the written form and the electronic and/or digital form are identical. This work
has not previously been submitted either in the same or in a similar form to another examination office.

Ich bin damit einverstanden, dass die vorliegende Hausarbeit/ Bachelorarbeit/ Masterarbeit
fiir Veroffentlichungen, Ausstellungen und Wettbewerbe des Fachbereiches verwendet und
Dritten zur Einsichtnahme vorgelegt werden kann.

| agree that this work can be used for publishing, exhibition or competition purposes and can be inspected by third parties.

X ja O nein o es liegt ein Sperrvermerk bis vor
Yes no there is an embargo period until

Lubeck, 11.01.2026 k. Wﬁ’%ﬁ/

Ort, Datum Unterschrift N
Place, Date Signature

Erkliarung zur KI-Nutzung

Bei der Anfertigung dieser Masterarbeit kamen generative KI-Werkzeuge zum Einsatz. Die ver-
wendeten Tools umfassen ChatGPT (OpenAl), Claude (Anthropic) sowie Gemini (Google). Die
Nutzung erfolgte ausnahmslos im Bereich der Textoptimierung: Verbesserung von Formulierun-
gen, Priifung von Grammatik und Rechtschreibung sowie stilistische Anpassungen, ebenso die
Erstellung von Programmcode. Die wissenschaftlichen Inhalte, Fragestellungen, Analysen und

Erkenntnisse dieser Arbeit sind vollstéandig meine eigene geistige Arbeit.

iii

Abstract of the thesis

Department:

Elektrotechnik und Informatik

Degree program:

Informatik / Softwaretechnik fiir verteilte Systeme

Subject:

Vergleichende Analyse von Retrieval-Augmented Generation (RAG)
Methoden: Embedding- vs. Volltext-basierte Ansitze

Abstract:

This thesis investigates whether full-text search can serve as a viable
alternative to embedding-based approaches in Retrieval Augmented
Generation (RAG) systems. The primary motivation stems from the
computational and operational overhead of generating and maintain-
ing embedding indices, whereas full-text search leverages established

indexing technology.

A comparative experiment was conducted using 6,284 questions
from 11 datasets across four search engines (pgVector, BM25,
Meilisearch, Typesense), each tested with different query preprocess-
ing strategies including query rewriting and keyword generation. An
automated Model-as-a-Judge approach rated responses against known

correct answers.

The results demonstrate that full-text search can outperform
embedding-based retrieval when combined with query reformulation.
The best full-text configuration achieved 40.44% correctness com-
pared to 31.19% for the best embedding-based approach, though

performance varied considerably across datasets.

These findings suggest that full-text search with appropriate query
preprocessing constitutes a practical alternative to embedding-based
RAG, offering reduced complexity and improved retrieval accuracy.

Results may differ with other model configurations.

Author:

Konrad Langenberg

Supervising pro-

fessor:

Prof. Dr.-Ing. Max Zimmermann

WS / SS:

Wintersemester 2025

iv

Contents

Contents
1 Introduction 1
2 Related Work . ..o 3
2.1 RAG OTIgINS ..ot 3
2.2 Architecture of a Retrieval Augmented Generation (RAG) system 4
2.3 Embeddingso 5
2.4 Injecting knowledge into an Large Language Model (LLM) through fine-tuning and
related approaches 6
2.5 Improving the Retrieval Processo 7
2.5 1 TOOL USE . ve ettt e e e 8
2.5.2 Using graph data structures ... 8
2.5.3 Reducing the need for retrieval 10
2.5.4 Building better retrieval methods 11
2.5.5 Reranking 12
2.5.6 Iteratively improving RAG results i 15
2.6 Search approaches and algorithms 15
2.7 Benchmarking RAG SyStemst e 16
2.8 ConClUSIONt 17
3 Method and Experiment Architecture i 18
3.1 Dataset Construction and Filteringo i 18
3.2 Model Selection e 22
3.3 Experiment Architecture i e 22
3.3.1 Search Enginest 23
3.3.2 Retriever TyPes ...t 24
3.3.3 Chunking Strategyo.oi i 24
3.4 ReranKing 25
3.5 Evaluation 26
3.6 Experimental Infrastructure 27
3.7 Key Considerations and Limitationso o i 27
A RESULES ..o 28
4.1 Overall Performance Across Search Engines 28
4.1.1 Best Embedding vs. Full-Text Search 31
4.1.2 Statistical Significance 34
4.1.3 Document Recall 35
4.2 Timing Analysisouou i 36
4.3 Performance by Dataset 39
4.4 Top 3 Configurations by Datasetoi i e, 39
4.4.1 Baseline Performance With Perfect Retrieval 43

Contents

4.4.2 Baseline Performance Without Retrieval 44

4.5 Overlap in Correctly Retrieved Documents Between Search Engines 45
4.6 CONCIUSIONt e 47

D DISCUSSION . ..o e et e 48
5.1 Full-Text Search Performance Compared to Embeddings 48
5.2 Dataset-Specific Performance Variation i 49
5.3 Reranking Effects i 50
5.4 Timing Implicationsc.. i e 50
5.5 Failures of Chunk-Based Retrieval with Full-Text Search 51
5.6 Document Recall and Generation Failure i i .. 51
5.7 Retrieval Dependency per Dataset ... 52
5.8 Potential for Hybrid Retrieval 53
5.9 Assessment and Recommendations i 53
5.9.1 Trade-offs Between Accuracy and Efficiency 54

5.9.2 Context-Dependent Recommendations, 54

5.9.3 Dataset-Specific Considerations, 54

5.9.4 Limitations and Caveatsottt 55

5.9.4.1 Single Model Dependencycoiuiiiiiiiiiiiiiiiiiiinnn.. 55

5.9.4.2 Evaluation Methodology o i 55

5.10 ConclUusSion 56

6 ConCIUSION ...\ttt e e 56
6.1 Key FIndingso e o6
6.2 Future Worko o7

A A DDA oot I
Al AnSwer Prompt ... I
A2 Query rewriting PrompPlSttt e e e e I
A.2.1 Search Query Promptoii 1I

A.2.2 Keyword Prompt I

A3 Evaluation Prompto i e 111
A.4 Search Engine Results by Dataset ... \Y
A.5 Search Engine Hyperparameters XI

B List Of FigUres ..ottt e e e XIII
C List of Tables ... e X1V
D List of ACTONYIMS . ..ot e e e XVI
E Bibliographyo XVII

vi

Introduction

1 Introduction

Large Language Models (LLMs) are trained on text corpora collected up to a specific cutoff date,
which means they lack knowledge about events and information that occurred after this cutoff
date. To extend the knowledge of LLMs with new information or domain-specific knowledge
outside of the trained parametric memory, Retrieval Augmented Generation (RAG) has become

the established approach to incorporate this knowledge into LLM responses.

RAG works by performing a search in a database based on the user’s query to find relevant
documents that might contain the answer to the question. These documents are then provided to
the LLM, which generates an answer using the retrieved information. Research has shown that
this approach performs significantly better than alternatives like fine-tuning, where additional
knowledge is added to the model by retraining parts of it. RAG is also more flexible since only
the knowledge corpus in the database needs to be updated, rather than fine-tuning an entire
model each time. This is particularly important for data that changes regularly and needs to

be updated frequently in the LLM.

However, the retrieval pipeline! introduces considerable complexity to make a RAG system
work reliably. Today, vector embeddings are most commonly used in practice for retrieval,
because of their ability to search for semantically similar documents based on a user query.
Using an embeddings-based approach requires maintaining a pipeline to keep these embeddings
up-to-date. This means developers face mostly classical engineering challenges around large-

scale data and database management, rather than Al-specific problems like training models.
This raises the question: can RAG systems work effectively without using embeddings?

After all, the core task is just finding the right documents, which should be possible without
embeddings. Full-text search has existed for a long time and is supported by many databases.

It naturally comes to mind when thinking about retrieving documents based on a user query.

While databases need to perform indexing to enable full-text search, which is similar to
having to maintain embeddings, the overall complexity is much lower. A database optimized
for full-text search handles indexing and the creation of search indexes all by itself. This makes
using these databases much less complex compared to building an embeddings pipeline where

embeddings need to be kept up to date.

An embeddings pipeline usually consists of one data store where the actual content is located
in human-readable text and another one where the embeddings are stored. The text content
(not the embedding vectors) needs to be stored to pass it to the LLM to generate the response.
To make the content searchable via text embeddings, the content has to be processed. First, it

needs to be divided into useful chunks? then the embeddings need to be generated for them.

!The component responsible for finding the right documents from the database.
?Because embedding vectors can only capture a limited amount of tokens, text needs to be split into multiple
smaller chunks to not overwhelm the embedding model.

Introduction

Creation of embeddings uses specialized embedding models. Most of the time these are hosted

externally and accessed using APIs, with the providers charging for usage.

Finally, embeddings have to be stored in a format that makes it possible to search through

them.

When searching in an embeddings database, embeddings need to be generated first for the
input search query. These embeddings are then used to search in the database. Combined, all

of these steps increase resource usage and response times of the overall application.

With a full-text database, the system only needs to add content to the database — and this
requires the same effort as with embeddings since the content needs to be stored in a human
readable format even when using embeddings. To search in the stored document corpus, only
a search query is required. This can be the input query directly from the user or a transformed
query. The database completely handles the index, developers only access the search function-
ality. As a result, the overall system is less complex with a full-text database compared to an

embeddings-based approach.

Both full-text search and embedding-based approaches require the same preprocessing
pipeline: document retrieval, parsing, and database storage. The operational complexity for
the preprocessing pipeline remains equivalent across both methods. However, full-text search
offers a more straightforward implementation path for indexing content compared to the vector

embedding approach.
Best Matching 25 (BM25) [1] has been the standard search algorithm for years, but newer

databases like Typesense and Meilisearch now offer full-text search with different ranking
algorithms. Since BM25 is the established approach, it’s worth investigating whether it should
still be used or if alternatives might perform better in a RAG setting.

The core contribution of this thesis is examining whether RAG can be done effectively without

embeddings and if it produces good results.

To answer this question, an experiment was designed which performs RAG tasks with different
search methods on multiple datasets. To establish baseline results, a None retriever condition
was tested in which the LLM has to generate an answer without any retrieved text input, relying
only on its internal parametric memory. These datasets are pre-filtered and were constructed
in [2] by filtering with the GPT-40 LLM from OpenAl to obtain questions that an LLM cannot
answer from its parametric memory. Most of these are Question Answering (QA) tasks that
aim to mimic typical chat applications. Other use cases like agents are out of scope and are

topics for future research.

The remainder of this thesis is structured as follows: First, Section 2 reviews current research
approaches on RAG, followed by Section 3 detailing the experimental design and implementa-
tion. Section 4 reports the obtained results, followed by Section 5, which interprets the findings

and addresses the research question. Finally, Section 6 concludes the thesis with key takeaways.

Related Work

2 Related Work

Current research in the area of RAG tends to focus on two topics: The improvement of how
LLMs understand and process knowledge and methods to improve the retrieval of information
for usage in RAG. Since the public release of ChatGPT in late 2022, many papers have been

published in this field - it is very much an active area of research.

This chapter describes related work and current research areas to improve RAG. In
Section 2.1, the origins of the RAG paradigm are described, followed by a general architecture
overview in Section 2.2, leading up to a brief explanation of embeddings in Section 2.3,
Section 2.4 explores knowledge injection through fine-tuning and related approaches. Section 2.5
examines research focused on improving the retrieval process. Section 2.6 presents fundamental

search algorithms, and finally Section 2.7 discusses approaches for evaluating RAG systems.

2.1 RAG origins

The term RAG was coined in the seminal paper by Lewis et al. in 2021 [3]. They introduced
the method as a hybrid approach that combines pre-trained parametric memory embedded in
a BART language model at the time, with non-parametric memory (dense vector retrieval of
content, in the case of the paper text content from Wikipedia) to improve performance on
knowledge-intensive Natural Language Processing (NLP) tasks. The language model, which
marginalizes over retrieved documents during generation, achieved state-of-the-art results on
open-domain question answering, reduced hallucination compared to purely parametric models,
and demonstrated the ability to update knowledge by simply replacing the retrieval index
without retraining. Two variants were proposed: RAG-Sequence, which uses the same retrieved
document for the entire output sequence, and RAG-Token, which can utilize different documents
for each generated token. They showed that this approach hallucinates less while being more
factually correct than other approaches. Factual correctness was verified using FEVER, a fact-

check benchmark [3].

They also found that the quality of the given response ultimately depends on the quality of

the retrieved documents. This is still true today.

Their research introduced a new way to update a model’s knowledge without having to re-

train it fully or fine-tune parts of it - a process which is expensive and needs a lot of resources.

While many improvements have been made to the way a RAG-System works since the paper

was published, modern RAG-Systems look a lot like the one originally proposed.

The different architectures have been presented by Gao et al. in a comprehensive survey of
RAG techniques for Large Language Models [4]. They categorize the evolution of the pattern
into three paradigms: Naive RAG (basic retrieve-read framework, as outlined in Section 2.2),
Advanced RAG (incorporating pre- and post-retrieval optimizations), and Modular RAG

(flexible architectures with specialized components).

Related Work

The analyzed studies demonstrate that RAG effectively mitigates LLM limitations such as
hallucination and outdated knowledge while generally outperforming fine-tuning approaches for

knowledge-intensive tasks.

RAG presents a way to add new or external knowledge to an LLM without having to retrain
or fine-tune the model, which makes these systems very interesting for a variety of use-cases.
The most obvious is question-answering systems which can reply to a wide variety of user

questions, but also chatbots, creating documents or generating software code.

2.2 Architecture of a RAG system
On a high level, a RAG system consists of two parts:

1. A retriever which fetches text content based on a user query

2. A generator which uses the retrieved content to generate a response to the query.
Formally, a RAG system can be expressed as follows:

D, = R(D, q)

a=G(q,D,)
Where R is a retriever function which, given a user query ¢ and a set of documents D, retrieves
relevant documents D,. The relevant documents D, are then passed to the generator function

G along with the original query ¢ to produce the final answer a. The generator is in almost all

cases an LLM being called with a special prompt to produce an answer.

Figure 1 shows an overview of what such a system looks like on a high level.

User Query
()

Relevant
Retriever Documents Generator

(R) (G)

Documents i

(D)

Answer

(a)

Figure 1: A general definition of a RAG System, combining documents D and a user query g with a
retriever R and a generator G to produce an answer to a query a.
The system is opaque to the way the retriever works under the hood. The retriever can be
a simple keyword-based search engine, a more complex embedding-based search engine, or a

combination of both.

The quality and relevance of the retrieved documents are highly important for the quality of

the response to the user query.

Related Work

Practitioners are expressing this as “If you want to make a good RAG tool [..], you should
start by making a search engine over those documents that would be good enough for a human

to use themselves.” [5]

Plenty of research is currently being conducted to improve the search process so that the
LLM used to generate the response has the most relevant content it needs to give an accurate

response to the user query.

2.3 Embeddings

Retrieving content happens mostly by using text embeddings in industry practice today. With
embeddings, all text content is first transformed into a high-dimensional vector representation
which captures its semantic meaning. These vectors can then be searched for similarity to the
input query using cosine distance or similar methods, returning only those pieces of content

semantically similar to the input query.

Neelakantan et al. demonstrated that embeddings produced by pre-training on unsupervised
data produce high-quality text and code embeddings [6] which can then be used to retrieve text

based on semantic similarity.

Nussbaum et al. present nomic-embed-text-v1 [7], the first fully reproducible long-context text
embedding model that achieves competitive performance with only 137 million parameters and
8192 token context length. The model employs a three-stage training pipeline using architectural
modifications to Bidirectional encoder representations from transformers (BERT). It demon-
strates superior performance to OpenAT’s text-embedding-ada-002 and text-embedding-3-small
on both short-context (MTEB) and long-context (LoCo) benchmarks. Notably, the authors
release all training artifacts including curated datasets, training code, and model weights,

addressing the lack of transparency in existing high-performing embedding models.

The same authors also introduce Nomic Embed v2 [8], the first general-purpose Mixture
of Experts (MoE) text embedding model, addressing the efficiency challenges of scaling
multilingual embedding models. Traditionally, these embedding models require 3-5x more
parameters than monolingual counterparts to achieve comparable performance. The model uses
an adapted XLM-RoBERTa architecture with 8 experts and top-2 routing, training on 1.6
billion high-quality pairs, resulting in 475M total parameters with 305M active during inference.
Experimental results demonstrate that the MoE approach outperforms similarly-sized dense
models on both monolingual (BEIR) and multilingual (MIRACL) benchmarks. This work
represents a fundamental shift from previous scaling approaches that relied solely on increasing

dense model capacity.

While embeddings are very useful for RAG systems, their main downside is the resource
intensive process of creating and keeping them up to date since in all cases this needs expensive
Al-infrastructure to either host a model or use a provider to access embedding models via

an API. When building these systems outside of lab tests, a considerable amount of software

Related Work

engineering has to be done to build the overall system in a way that ensures information is kept

up to date and embeddings are created for all text in the system.

2.4 Injecting knowledge into an LLM through fine-tuning and related

approaches
Before the original RAG paper was published, Lauscher et al. [9] investigated adapter-based
knowledge injection into BERT using bottleneck adapters rather than full model fine-tuning to

avoid catastrophic forgetting® of distributional knowledge.

While overall GLUE benchmark results showed limited improvements, the trained models
demonstrated substantial performance gains on inference tasks requiring factual world knowl-
edge and named entity information, but performed worse on tasks which required common
sense reasoning. The authors concluded that explicit knowledge injection is effective for factual

information but insufficient for complex reasoning tasks.

Similarly, Wang et al. proposed K-ADAPTER [11], a framework for injecting knowledge
into pre-trained language models by keeping the original model parameters frozen and training
compact knowledge-specific adapters independently. This improves upon previous methods

where the resulting model would lose previously learned knowledge during fine-tuning,.

Newer research by Ovadia et al. systematically compared unsupervised fine-tuning and RAG
for knowledge injection in LLMs [12]. They evaluated three 7B-parameter models across MMLU
benchmark tasks and a custom current events dataset containing information beyond the
models’ training cutoff*. Their findings demonstrate that RAG consistently outperforms fine-
tuning for both previously encountered and entirely new knowledge. The authors attribute this
superiority to RAG’s ability to provide relevant context alongside factual information while
avoiding the catastrophic forgetting that can occur during fine-tuning. The study also reveals
that LLMs struggle to internalize new factual information through unsupervised fine-tuning
alone, though exposing models to multiple paraphrased variations of the same facts during

training shows promise for improving knowledge retention.

Combining both approaches, Zhang et al. [13] propose RAFT (Retrieval-Augmented Fine
Tuning), a new training strategy that fine-tunes LLMs for domain-specific RAG. The method
trains models on question-answer pairs where some training instances include “golden” docu-
ments which contain the answer along with distractor documents, while others contain only
distractors, teaching the model which documents from a retrieval set are relevant for answering
a question. RAFT then generates chain-of-thought style answers with verbatim citations from
relevant documents. Experiments across different benchmarks demonstrate that RAFT consis-

tently outperforms standard supervised fine-tuning approaches.

3Catastrophic forgetting is a phenomenon where an LLM forgets factual information it was originally trained
on when it is fine-tuned for other tasks. [10]

4The training cutoff is the date when no more training data was collected and model training was started.
Without relying on external sources, LLMs don’t have any knowledge about events that happened beyond that
training cutoff date.

Related Work

Borgeaud et al. introduced RETRO (Retrieval-Enhanced Transformer) [14], a semi-paramet-
ric language model that conditions on document chunks retrieved from a 2 trillion token
database using frozen BERT embeddings and a chunked cross-attention mechanism. This
approach is similar to RAG in that it uses a retrieval mechanism to augment a language model,
but it integrates retrieval directly into the transformer architecture rather than as a separate
step. In comparison with RAG, RETRO slightly outperforms it (45.5 accuracy of RETRO vs
44.5 accuracy of RAG).

Despite using 25x fewer parameters than GPT-3, RETRO achieves comparable performance
on benchmarks like the Pile and Wikitext103, demonstrating that retrieval from massive-
scale databases can effectively decouple computational scaling from model memorization. The
approach shows consistent improvements across model sizes (150M-7B parameters) and can be
retrofitted to existing models, while also reducing hallucinations and improving factual accuracy

compared to purely parametric models.

In summary, the research results presented in this section indicate that it does not make much
sense to pursue fine-tuning as a viable alternative to RAG, since it is less flexible and yields
worse results than RAG. Even though Lauscher et al. and K-ADAPTER demonstrated better
performance of their fine-tuning approach, they only compared a fine-tuned model with a vanilla
BERT model, whereas current state-of-the-art LLMs are more complex and have significantly

more parameters.

2.5 Improving the Retrieval Process

As established in earlier sections, to achieve good results with a RAG system, the quality and
relevance of the retrieved documents are most important for the quality of the overall response.
Therefore, it makes sense to focus on improving the retrieval part of a RAG system. This section

and its subsections explore current research in this area.

Anthropic have proposed a way to enrich RAG-content by prepending chunk-specific explana-
tory content to document chunks before creating embeddings. They call this pattern Contextual
Retrieval [15]. This addresses the problem of chunks lacking sufficient context for accurate
retrieval.

The method automatically generates contextual information based on the full document using
an LLM and reduces top-20 chunk retrieval failure rates by 49% when combining the resulting
embeddings with Contextual BM25 (from 5.7% to 2.9%), and achieves a 67% reduction (to
1.9%) when further combined with reranking.

The study demonstrates that combining semantic embeddings with lexical matching (BM25),
adding contextual information to chunks, and implementing reranking all contribute additively

to retrieval performance improvements across multiple knowledge domains.

Related Work

2.5.1 Tool use
Tool use refers to the capability of LLMs to invoke external functions that extend their base

functionality. State-of-the-art LLMs are trained to identify appropriate tools for a given task
and generate structured function calls accordingly. If the LLM wants to use a tool, it outputs a
tool invocation request, which the host application executes externally. The tool results are then
provided back to the LLM as context, enabling it to generate a final response that incorporates

the result of the function execution.

Toolformer [16] introduces this pattern in a self-supervised approach for training language
models to use external tools through API calls. The method uses in-context learning before fine-
tuning the model on a dataset filtered by those API calls. Experimental results show that the
resulting model, based on a 6.7B parameter GPT-J model, significantly outperforms baseline
models and even much larger models like GPT-3 on mathematical reasoning, factual knowledge
retrieval, and multilingual tasks while preserving core language modeling capabilities. The
approach demonstrates that language models can learn to autonomously decide when and how

to leverage external tools in zero-shot settings, though it is limited to single APT calls per input.

Combining reasoning with tool use, Yao et al. introduce ReAct [17], a prompting paradigm
that enables large language models to interleave verbal reasoning traces with task-specific
actions. The approach combines the benefits of chain-of-thought reasoning with external envi-
ronment interaction, using a simple Wikipedia API for knowledge-intensive tasks. ReAct consis-
tently outperforms both reasoning-only and action-only baselines while providing enhanced
interpretability and reduced hallucination compared to standard chain-of-thought approaches.
The method’s effectiveness extends to fine-tuning scenarios, where ReAct demonstrates superior
performance even with smaller models and limited training data, suggesting its potential as a

foundation for integrating reasoning capabilities with external knowledge retrieval.

This shows an interesting direction for infusing new knowledge into existing language models
at runtime by providing a search function which can be used like a search engine, making this

a worthwhile area to explore for RAG systems.

2.5.2 Using graph data structures

LightRAG [18] addresses limitations of traditional retrieval-augmented generation systems
by incorporating graph structures into text indexing and retrieval processes. They use large
language models to extract entities and relationships from documents to construct knowledge

graphs that capture the dependencies between information sources.

The system employs a dual-level retrieval paradigm which combines low- and high-level
retrieval for narrower and broader topics, to better answer specific and abstract queries. Exper-
imental evaluation across multiple datasets from the UltraDomain benchmark demonstrates
that LightRAG consistently outperforms baseline RAG methods, particularly on datasets where

baseline methods struggle to synthesize information across multiple document sources.

Related Work

Going in a similar direction, Fatehkia et al. present Tree-RAG (T-RAG) [19], a system
that combines Retrieval-Augmented Generation with a fine-tuned Llama-2 7B model and a
novel tree-based context component. The tree structure specifically addresses hierarchical entity
relationships within organizations, which traditional RAG and knowledge graph approaches
handle poorly. In human evaluations on 37 questions from organizational documents, T-RAG
achieved 73% correct responses compared to 56.8% for standard RAG and 54.1% for fine-tuning
alone, though the limited evaluation scale raises questions about the broader generalizability of

these improvements.

Sepasdar et al. introduce Structured-GraphRAG [20], a framework that enhances RAG
systems by automatically constructing knowledge graphs from structured datasets, specifically
demonstrated using soccer data from the SoccerNet dataset. Unlike traditional GraphRAG
approaches that require domain experts to design knowledge graphs, the researchers developed
an automated method for transforming structured tabular data into graph representations. The
system operates through a four-step process: knowledge graph construction, query translation
(converting natural language to Cypher queries), information retrieval from the graph data-
base, and answer generation using GPT-3/GPT-4 models. Evaluation on soccer data showed
significant performance improvements over traditional RAG methods, achieving 64% accuracy
compared to 36% for baseline approaches, while also demonstrating substantial execution time

reductions.

While demonstrated on soccer data, the methodology is designed to be domain-agnostic and
applicable to any structured dataset organized in tabular format, though the evaluation was

conducted with a limited scope of 10 questions tested across 5 iterations each.

Their study shows that RAG systems dealing with structured data rather than text-only
content can benefit from graph-based representations to better capture relationships and

dependencies within the data, ultimately improving RAG results.

Extending graph-based RAG from structured tables to unstructured corpora, HippoRAG
[21] introduces a neurobiologically inspired retrieval layer that treats a schemaless OpenlE

knowledge graph as a hippocampal-style index for long-term memory in LLMs.

In contrast to other graph-based RAG methods, HippoRAG does not need corpus data to
be in a graph format, but constructs a knowledge graph from unstructured text using OpenlE.
During retrieval, it runs a Personalized PageRank algorithm over the graph to find relevant
passages. Empirically, HippoRAG achieves sizable gains on multi-hop QA while being 6-13x
faster and 10-30x cheaper than strong retrievers. The approach is unsupervised, incrementally
updatable, and particularly effective for “path-finding” queries that require linking dispersed
facts.

The presented studies indicate that using graph data structures rather than text-only
approaches can yield better results when the underlying data benefits from structured repre-

sentation and hierarchical relationships are important.

Related Work

2.5.3 Reducing the need for retrieval
Jiang et al. introduce Forward-Looking Active REtrieval augmented generation, FLARE [22],

a method that enhances retrieval-augmented language models by actively deciding when and
what to retrieve during generation, addressing the limitations of single-time retrieval approaches
in long-form text generation tasks. FLARE iteratively generates a temporary next sentence
and uses it as a query to retrieve relevant documents when the model exhibits low confidence,
then regenerates the sentence conditioned on the retrieved information. The approach achieves
superior performance compared to different retrieval baselines across four diverse long-form
generation tasks, demonstrating that forward-looking retrieval queries that anticipate future
content significantly outperform past-context-based approaches. The method is applicable to
any large language model at inference time without requiring additional training, making it a

practical solution for improving RAG systems.

Déjean [23] presents a method for training large language models to determine when RAG
is necessary by developing an “I Know” (IK) classifier which predicts whether an LLM can
answer questions using only its parametric memory. The method enables a reduction of over
50% in retrieval operations across various question-answering datasets while maintaining or
improving answer quality. The work provides empirical evidence that LLMs can be trained to
assess their own knowledge limitations, with performance varying significantly across different

dataset types and retrieval requirements.

Due to the need to train a model on the proposed behaviour, this approach is suitable only
for use cases where the model already has extensive knowledge of the topic the RAG system is

being built for. This makes it not suitable for the task explored in this thesis.

Chan et al. propose Cache-Augmented Generation (CAG) [24] as an alternative to RAG for
knowledge-intensive tasks, leveraging the extended long context capabilities of modern LLMs.
Their approach involves preloading all relevant documents into the LLM’s context window
and then storing the resulting key-value (KV) cache offline, eliminating retrieval latency and
potential retrieval errors inherent in traditional RAG systems. Experiments on SQuAD and
HotPotQA benchmarks using Llama-3.1 8B demonstrate that CAG consistently achieves higher
BERT Scores than both sparse (BM25) and dense (OpenAl embeddings) RAG baselines.

The authors conclude that, as long as the entire knowledge base fits within the model’s
context window, CAG outperforms RAG, with the performance gap narrowing as the document
collection size increases. This also means the approach is limited to scenarios where the
entire knowledge base can fit within the model’s context window. For applications with small,
constrained knowledge bases such as internal documentation or FAQs, CAG can provide a more
effective alternative to RAG, though hybrid approaches combining preloading with selective

retrieval may offer optimal solutions for larger-scale applications.

Li et al. conduct an evaluation comparing Long Context (LC) and RAG approaches for LLMs
[2]. To assess conflicting findings in prior literature, the study employs a methodology that

10

Related Work

filters out questions answerable from parametric knowledge, to make sure that their evaluation
focuses on the retrieval and does not benchmark the LLM itself. It evaluates multiple retrieval
methods (chunk-based, index-based, and summarization-based), and expands existing datasets

to approximately 20,000 questions across 12 QA benchmarks.

Their experiments reveal that LC generally outperforms RAG (56.3% vs 49% accuracy),

particularly with well-structured, dense contexts such as Wikipedia articles and narrative texts.

However, RAG demonstrates advantages when handling fragmented information, especially
in dialogue-based scenarios and general questions requiring synthesis from multiple sources.
Among retrieval methods tested, RAPTOR (a summarization-based approach using hierarchical
clustering) achieved the best performance at 38.5% accuracy, outperforming chunk-based and

index-based retrievers.

In summary, approaches that reduce retrieval needs have distinct limitations: FLARE enables
adaptive retrieval at inference time, the “I Know” classifier requires domain-specific training
data, and CAG is constrained by context window size. These methods work best when knowl-
edge is stable and well-represented in the model’s training data, limiting applicability to use

cases requiring frequent content updates or specialized information.

2.5.4 Building better retrieval methods

Leto et al. investigate optimization strategies for retrieval components in RAG pipelines [25],
evaluating systems with two instruction-tuned LLMs and two dense retrieval models across
three datasets. Key findings show QA performance plateaus at 5-10 retrieved documents, with
gold document’® recall being more critical than search recall, with more gold documents yielding
better results. Notably, the study demonstrates that approximate nearest neighbor search with
reduced accuracy provides substantial speed and memory benefits with minimal performance

loss.

Contrary to prior work, injecting noisy documents consistently degrades both correctness
and citation quality, indicating that retrieval systems should prioritize retrieving relevant gold

documents over maximizing retrieval quantity.

Soman and Roychowdhury conducted experimental studies on RAG systems for technical
documents [26] using IEEE specifications and battery terminology, finding that sentence
embeddings become unreliable with increasing chunk sizes, particularly when queries or docu-
ments exceed 200 words. Their key finding was that similarity score thresholding for retrieval
augmentation can be unreliable and potentially result in sub-optimal generator performance,
while better contextual retrieval (sentence-based similarity with paragraph-level retrieval) and
splitting definitions from terms in glossaries improved overall system performance. The authors
demonstrated that chunk length significantly affects retriever embeddings and that keyword
positioning within sentences influences retrieval accuracy, though they acknowledge the domain-

specific nature of their telecom-focused findings may limit generalizability.

°A document which contains the ground truth to a given question.

11

Related Work

Weller et al. introduce Promptriever [27], the first retrieval model capable of being prompted
like language models to dynamically adjust relevance criteria on a per-query basis. Using
LLaMA as a backbone, the authors train a Bi-encoder on a curated dataset of ~500k MS
MARCO instances augmented with instance-level natural language instructions and “instruc-
tion negatives” - cases where query-passage pairs become less relevant when specific instructions

are added.

This approach would be used in the retrieval step in a RAG pipeline where a user query
is transformed to a vector embedding for search in a vector database. Instead of a generic
embedding model, Promptriever produces embeddings conditioned on the input instruction,
enabling users to specify detailed relevance criteria (e.g., “movies before 2022 that are not co-

directed”) without requiring traditional filters or reranking approaches.

Promptriever achieves state-of-the-art performance on instruction-following retrieval bench-
marks while maintaining competitive standard retrieval performance, and demonstrates the

ability to reliably improve retrieval through zero-shot prompting.

These studies demonstrate that QA performance plateaus at 5 to 10 retrieved documents,
with gold document recall being more critical than overall search recall, and that chunk
sizes should not exceed 200 words to maintain embedding reliability. Since retrieving relevant
documents proves more important than maximizing retrieval quantity, reranking techniques
(Section 2.5.5) seem promising to ensure the limited number of documents provided to the

generator are of highest relevance.

2.5.5 Reranking
Reranking is the process of ranking documents for relevance compared to a user query. In RAG,

this step is performed after retrieving documents from the retriever, refining the document
search results before passing them to the generator. Formally, this can be expressed as an

additional step or as part of the retrieval component.

Yu et al. [28] present RankRAG, an instruction-tuned LLM which can rank relevant docu-
ments and provide the answer to a user query based on the top-k reranked documents. The
approach uses a two-stage training process that unifies ranking and generation tasks into a
standardized question-context-answer format, enabling effective knowledge transfer across tasks.
During inference, RankRAG adds an additional ranking step to traditional RAG pipelines,
where the model first reranks retrieved contexts and then generates answers using the top-
ranked passages.

Experimental results using Llama3 8B and 70B models demonstrate that RankRAG
significantly outperforms existing RAG methods. Additionally, the method shows strong gener-
alization capabilities, achieving comparable performance to GPT-4 on biomedical benchmarks
without domain-specific training, suggesting that the dual ranking and generation capabilities

mutually enhance each other in RAG systems.

12

Related Work

Yan et al. propose Corrective Retrieval Augmented Generation (CRAG) [29], a plug-and-play
framework that addresses the robustness issues in RAG systems when retrieval quality is poor.
The approach employs a lightweight T5-based retrieval evaluator to assess document relevance
and triggers three corrective actions: knowledge refinement for relevant documents, web search
fallback for irrelevant retrievals, and a hybrid approach for ambiguous cases. Experimental
results demonstrate significant performance improvements over standard RAG and Self-RAG,

while maintaining minimal computational overhead.

Going in a similar direction, Zhang et al. present mGTE [30], a framework for building
long-context multilingual text representation and reranking models. The system combines a
hybrid text representation model capable of generating both dense and sparse vectors with a
cross-encoder reranker, both trained on a large-scale multilingual dataset. Evaluation results
demonstrate that their base-sized encoder outperforms the previous state-of-the-art XLM-R
on natural language understanding benchmarks, while their retrieval models match the perfor-

mance of larger BGE-M3 models and achieve superior results on long-context retrieval tasks.

Blagojevic introduces two novel ranking components for enhancing RAG pipelines in the
Haystack framework [31]: DiversityRanker, which uses sentence transformers and a greedy
algorithm to select semantically diverse documents from a relevance-filtered pool, and
LostInTheMiddleRanker, which mitigates the lost in the middle problem® by positioning the
most relevant documents at the beginning and end of the LLM’s context window. Both compo-
nents were evaluated on long-form question answering tasks and found to achieve a 20-30%
increase in average pairwise cosine distance between context documents compared to baseline
pipelines. However, the evaluation methodology primarily relied on diversity metrics rather
than comprehensive answer quality assessment, limiting the conclusions about overall RAG

performance improvements.

Proposing a more integrated approach, Asai et al. introduce SELF-RAG [32], a framework
which reviews and critiques retrieved documents before using them to generate a response.
They train an LLM to output retrieval tokens to trigger a retrieval model and critique tokens

to evaluate the output and choose the best sources for answer generation.

For training, they distill GPT-4 feedback into a critic that labels training data with Retrieve/
ISREL/ISSUP /ISUSE tokens; the generator is then trained to predict both outputs and these

tokens. At test time, only the generator and an external retriever are needed.

Across six tasks, SELF-RAG outperforms instruction-tuned and RAG baselines. Limitations
include occasional unsupported generations despite citations, dependence on off-the-shelf
retrieval and corpus choices, and sensitivity to training data scale. Human evaluations report

good alignment of reflection tokens with annotator judgments.

6The lost in the middle problem is a phenomenon where LLMs when given a list of documents, seem to
prioritize those documents at the start and end of the prompt, losing the information in the middle.

13

Related Work

Similarly, Xia et al. propose Self-Reasoning [33], an end-to-end framework that enhances
Retrieval-Augmented Language Models by incorporating self-generated reasoning trajectories
through three processes: relevance assessment, evidence selection with citation, and trajectory
synthesis. The framework trains LLMs to internally evaluate and filter retrieved documents
without external tools, requiring only 2,000 training samples compared to 46,000 for competing
methods like SELF-RAG. Evaluated on various datasets, the approach demonstrates superior
performance, particularly in fact verification tasks, while improving both reliability through

better handling of noisy retrievals and traceability through explicit citation generation.

Li et al. conducted a comprehensive evaluation of RAG system components [34] through 74
experiments across nine research questions, using TruthfulQA and MMLU datasets to assess
performance variations across different RAG setups. The study introduced and tested several
advanced RAG designs. Query expansion, where the input query is expanded into multiple
keyword phrases relevant to answer the query, Contrastive In-Context Learning which includes
correct and incorrect examples from the evaluation data as the knowledge base, and Focus

Mode that performs sentence-level retrieval and ranking.

Results demonstrated that Contrastive In-Context Learning achieved the strongest perfor-
mance improvements, significantly outperforming baseline RAG systems, while Focus Mode
ranked second by prioritizing precise, relevant context over comprehensive coverage. Contrary to
common assumptions, the study found that knowledge base size and document chunk variations
had minimal impact on performance, with context quality and relevance proving more critical

than quantity.

The focus mode shows that reranking is a valid approach to improve RAG generation results.
Query expansion seems like a promising way to improve full-text search for keywords in the

context of this thesis.

The approaches range from training-intensive methods like SELF-RAG to lightweight alterna-
tives like Self-Reasoning and plug-and-play solutions like CRAG. Hybrid approaches combining
dense and sparse vectors with cross-encoder reranking, such as mGTE, demonstrate superior

performance across different task types.

Reranking in general presents an interesting direction for improving RAG systems when the
retrieval process itself fails to return good results. This could be the case when the initial
retrieval returns suboptimal results. Even when not using web search, as is often the case with
QA systems used in practice, refining search results before the generation process seems to be
a promising direction.

In CRAG’s web search approach, they are using an LLM to pick the keywords to search
for, a solution which could be applicable for searching using traditional full-text search as
well. Interestingly, they are only using 10 documents - when having a reranker system to rate
retrieved documents, it would be possible to retrieve 100 documents, rank them and then use

the top 10 among the 100 ranked.

14

Related Work

Using these approaches from the different methods provides a promising direction for the

topics in this thesis.

2.5.6 Iteratively improving RAG results
More recently, Xi et al. present OmniThink [35], a machine writing framework that emulates

human-like iterative research processes by continuously expanding on retrieved information
through alternating expansion and reflection cycles. The method introduces an Information
Tree that hierarchically organizes retrieved information and a Conceptual Pool that distills
insights to progressively expand both information and cognition boundaries during the writing
process. Experimental results on the WildSeek dataset demonstrate superior performance over
existing methods across metrics of relevance, breadth, depth, and novelty, with the authors
introducing a new Knowledge Density metric to measure the ratio of meaningful content to

total text volume.

Similar to CRAG, SEAKR (Self-aware Knowledge Retrieval) [36] introduces an adaptive
retrieval-augmented generation approach that leverages the internal states of large language
models to dynamically determine when to retrieve external knowledge and how to integrate it.
The method extracts self-aware uncertainty by computing the Gram determinant and using it to
trigger retrieval when thresholds are exceeded. SEAKR incorporates three adaptive mechanisms:
self-aware retrieval for deciding when to search, self-aware re-ranking for selecting the most
uncertainty-reducing knowledge snippets from retrieved candidates, and self-aware reasoning for
choosing between different synthesis strategies. Their approach achieved substantial improve-
ments over existing adaptive RAG methods, with ablation studies revealing that dynamic
knowledge integration strategies contributed more to performance gains than the retrieval
decision mechanism alone. The tuning-free approach demonstrates better generalization across
tasks compared to fine-tuned alternatives, though it requires access to model internal states

and incurs computational overhead from multiple generation sampling.

While these iterative approaches show promise, OmniThink’s multi-cycle process is primarily
suited for long-form content generation, and SEAKR’s multiple generation sampling incurs

computational overhead that may limit use in latency-sensitive QA scenarios.

2.6 Search approaches and algorithms

Robertson and Zaragoza present a theoretical exposition of the Probabilistic Relevance Frame-
work (PRF) [37], which provides the formal foundation for BM25, one of the most successful
document retrieval algorithms in information retrieval. The framework models document rele-
vance as a hidden probabilistic variable, enabling systems to rank documents by their estimated
probability of relevance to a given query through a principled mathematical derivation. The
paper extends the basic BM25 algorithm to BM25F, which incorporates document structure
and metadata (such as titles, abstracts, and anchor text) through weighted field combinations,

making it particularly effective for web search and structured document collections.

15

Related Work

Singh et al. [38] define and systematize Agentic RAG, asking how embedding autonomous
agents (reflection, planning, tool use, multi-agent collaboration) extends traditional RAG to
enable adaptive retrieval, iterative refinement, and complex task orchestration. They contribute
a taxonomy of architectures and workflow patterns, alongside a comparative analysis with prior
RAG paradigms. The paper also surveys tools and frameworks and synthesizes applications

across different domains.

Key conclusions highlight benefits in contextual precision and scalability via agentic orches-

tration, while noting challenges in coordination complexity, latency, and ethical deployment.
Generally, the idea to compose multiple LLMs with tools to improve RAG seems promising.

Anderson et al. present Lingua [39], a speech-to-speech interpretation system that addresses
error propagation issues in cascaded ASR-MT-TTS pipelines by incorporating pre-existing
speech scripts. The system uses a fuzzy matching algorithm based on Levenshtein distance
to align real-time Automatic Speech Recognition (ASR) transcriptions with script sentences
at the phonemic level, achieving F1 scores above 0.95 with an average lag of 0.72 seconds.
This approach significantly improves translation accuracy while reducing latency compared
to traditional cascaded systems, making it particularly suitable for live speech interpretation

scenarios where scripts are available in advance.

As this approach covers speech-to-speech, it is not directly relevant for the topic of this thesis,
but demonstrates a simple algorithm to find matches between the transcript and manuscript,

which can be useful for general text-matching for RAG.

2.7 Benchmarking RAG systems

To find out if the performance of a RAG system is optimal, various benchmarks exist.

Friel et al. introduced RAGBench [40], a comprehensive benchmark dataset comprising 100k
examples across five industry domains for evaluating Retrieval-Augmented Generation systems,
addressing the lack of standardized evaluation criteria in the field. The authors developed the
TRACe evaluation framework, which measures four key metrics: utilization, relevance, adher-
ence, and completeness of RAG system components. Through extensive benchmarking, they
demonstrated that fine-tuned specialized models (DeBERTa-v3-Large) consistently outperform
LLM-based evaluation methods such as GPT-3.5 judges, RAGAS, and TrulLens across most
evaluation tasks. The study reveals that context relevance estimation presents particular chal-
lenges, requiring sophisticated understanding beyond semantic similarity to determine whether

retrieved documents contain specific information necessary for accurate question answering.

Fleischer et al. introduce RAGFoundry [41], an open-source framework designed to address
the complexity of implementing and evaluating RAG systems. The framework integrates the
four key modules: data creation, training, inference, and evaluation into a unified workflow
for RAG experimentation and evaluation. The data processing module employs components

including loaders, retrievers, samplers, and prompters, while the training module supports

16

Related Work

LoRA fine-tuning using the TRL framework. The evaluation module incorporates different
local and global metrics for evaluation. The authors demonstrate the framework’s effectiveness
by fine-tuning Llama-3 and Phi-3 models across three knowledge-intensive question-answering
datasets (TriviaQA, PubmedQA, ASQA).

This framework distinguishes itself from production-oriented RAG tools by focusing specifi-

cally on academic research needs and comprehensive evaluation capabilities.

Krishna et al. introduce FRAMES [42], a benchmark with 824 multi-hop Wikipedia questions
evaluating retrieval-augmented generation across factuality, retrieval, and reasoning. State-of-
the-art LLMs score 0.408 without retrieval, improve modestly with BM25, and reach 0.729
with oracle documents, where the LLM receives all documents used to create the question,
simulating perfect retrieval. A multi-step retrieval-and-planning pipeline achieves 0.66, though
errors persist in numerical and tabular reasoning. Future work targets stronger retrievers and

process-supervised reasoning to close the performance gap.

While this presents an interesting approach, its focus on complex reasoning tasks is somewhat
misaligned with the goals of this thesis. Its use of search queries is similar to the intended

methodology.

2.8 Conclusion
This chapter looked at current research in RAG, revealing several key insights that inform the

direction of this thesis.

The origins of RAG (Section 2.1) established that retrieval quality fundamentally deter-
mines system performance, a finding that remains true today. While fine-tuning approaches
(Section 2.4) can inject knowledge into language models, research demonstrates that RAG

consistently outperforms fine-tuning for knowledge tasks, making it a better approach for adding

knowledge to LLMs.

Current research on improving retrieval (Section 2.5) reveals multiple promising directions.
Graph-based approaches show benefits for structured data and hierarchical relationships,
though they are only suitable when the data has certain characteristics. Methods that reduce
retrieval needs by figuring out if the LLM can answer a question from its parametric memory
work best when knowledge is stable and well-represented in training data, limiting their use for

specialized domain-specific or frequently-updated knowledge.

The most relevant findings center on building better retrieval methods. Research shows that
QA performance plateaus at 5-10 retrieved documents, and chunk sizes should not exceed
200 words to maintain embedding reliability. Since retrieving relevant documents proves more
important than maximizing retrieval quantity, reranking techniques (Section 2.5.5) are a
promising direction to ensure the limited documents provided to the generator are of highest

relevance.

17

Method and Experiment Architecture

Multiple studies demonstrate that combining semantic embeddings with lexical matching
(BM25), adding contextual information to chunks, and implementing reranking all contribute
additively to retrieval performance. Notably, sparse retrieval methods like BM25 can outperform
dense embedding-based approaches in certain scenarios (Section 2.6), suggesting that traditional
full-text search algorithms remain competitive and deserve further investigation.

The surveyed benchmarking approaches (Section 2.7) provide standardized evaluation frame-
works, with metrics emphasizing context relevance, utilization, and adherence being critical for
assessing RAG system quality.

These findings suggest a promising research direction: investigating whether traditional full-
text search approaches, enhanced with query expansion and reranking techniques, can achieve
competitive performance with embedding-based RAG systems while avoiding the resource
intensive process of creating and maintaining embeddings. This forms the central motivation

for the work presented in subsequent chapters.

3 Method and Experiment Architecture

This chapter outlines the methodology used to conduct the experiments.

3.1 Dataset Construction and Filtering

The starting point was a multi-source dataset constructed of various questions with correct
answers and the corresponding document corpus. It was originally filtered using GPT-40 to
identify questions that cannot be answered from world knowledge alone [2]. The original contri-
bution of this dataset was ensuring that answering these questions requires retrieval rather than
relying on a model’s parametric knowledge. This makes it particularly suitable to benchmark

retrieval quality.

The original dataset comprised 11,758 questions’” compiled from twelve different original

datasets:

We select 12 long-context QA datasets frequently used in studies comparing LC® and
RAG: Natural Questions, 2WikiMultihopQA, HotpotQA, MuSiQue, MultiFieldQA, Narra-
tiveQA, QASPER, QuALTY, Coursera, TOEFL-QA, and MultiDoc2Dial. We also include
the Novel QA dataset, a high-quality, human-annotated resource derived from long-form

novels.

— 2

The datasets have been selected to provide a high variety of different questions catering to

different use cases.

"In their paper, the authors mentioned a total of 13,628 questions. The dataset provided with the paper only
contains 11,758 questions. Hence, this thesis can only use 11,758 questions.
8Long Context

18

Method and Experiment Architecture

Natural Questions (NQ) [43] is a large-scale open-domain QA benchmark of real Google
search queries paired with Wikipedia pages and annotated with both long and short answers
or null labels. 2WikiMultihopQA [44] is a multi-hop QA dataset built from aligned Wikidata—
Wikipedia evidence, where templated questions are accompanied by explicit reasoning paths
across multiple entities and documents. HotpotQA [45] consists of 113K Wikipedia-based
QA pairs whose diverse questions require reasoning over multiple supporting documents with
sentence-level supporting fact annotations and comparison questions. MuSiQue [46] is a multi-
hop QA benchmark formed by composing interdependent single-hop questions to questions that
require reasoning over multiple steps, additionally including contrastive answerable/unanswer-
able variants. MultiFieldQA [47] comprises roughly 150 manually curated questions over long
single documents from law, government, encyclopedias, and scientific articles, targeting long-
context single-document comprehension. NarrativeQA [48] is a reading comprehension dataset
based on full books and movie scripts, where questions require global narrative understanding
across entire documents. QASPER [49] is an information-seeking QA dataset over 1,585 NLP
papers with 5,049 questions authored by practitioners and supporting evidence. QUALITY [50]
is a multiple-choice QA benchmark with about 5K-token passages and questions written by
readers of the full text. Novel QA [51] is a long-context benchmark based on English novels with
documents exceeding 200K tokens on average and human-authored questions with evidence
annotations targeting deep understanding of text in LLMs. MultiDoc2Dial [52] is a dialogue
dataset grounded in multiple datasets in which conversations are conditioned on multiple
domain documents, requiring integration of information from multiple documents across four
different domains. TOEFL-QA [53] is a multiple-choice listening comprehension dataset of
963 examples from the TOEFL test with relatively short narrative contexts assessing English
understanding. The Coursera QA [54] dataset contains 172 multiple-choice questions with
multiple correct answers about course materials with an average context length of ~9K tokens
per document. It tests knowledge-based comprehension of instructional content and was made
for use in long-context evaluation.

Table 1 shows the distribution and actual sources from the original data sources as outlined
in [2].

Note that for multi-document datasets (marked “multi” in the Doc column), the original
benchmark provides a single pre-concatenated context containing all relevant source documents
rather than separate document records. This means that even for multi-hop reasoning datasets
like HotpotQA, MuSiQue, and 2WikiMultihopQA, which originally require evidence from
multiple Wikipedia articles, this experiment treats each merged context as a single retrievable
unit. Consequently, document recall measures whether this merged context was retrieved, not

whether individual supporting documents were found separately.

For this experiment, the dataset was reduced to 6,284 questions for practical reasons.

19

Method and Experiment Architecture

Dataset T | Doc | Source Avg Len | # Q | # Kept | % Kept
NQ K | multi | Wikipedia 18,164.7 | 109 22 20
Coursera K | multi | Coursera 7,934.3 | 172 54 32
NovelQA C | single | books 67,000.0 | 210 109 52
2WikiMHQA | R | multi | Wikipedia 7,191.3 | 300 152 51
HotpotQA R | multi | Wikipedia 10,602.7 | 200 93 47
MuSiQue R | multi | Wikipedia 12,974.3 | 200 140 70
MultiFieldQA | C | single | papers, reports 5,706.1 150 121 81
NarrativeQA C | single | books, films 25,274.2 | 200 171 86
QASPER C | single | papers 5,350.3 | 224 221 99
QuALTY C | single | stories 5,089.2 | 202 202 100
TOEFL-QA C | single | exams 729.1 | 121 121 100
MultiDoc2Dial | C | multi | dialogue 3,076.9 | 158 158 100

Table 1: Overview of the original datasets as outlined in [2]: ‘The column “T” represents dataset type
with values “K” for “Knowledge”, “R” for “reasoning”, and “C” for “reading comprehension”. [..] We
also report number of questions in each set (# Q), number and percentage of questions retained after
filtering (# Kept and % Kept) out questions needing no context|..]. “Avg Len” is the average size of the

context that is provided to the model to answer the questions from each dataset in tokens.

Questions whose golden documents required more than estimated 100,000 tokens to process
were removed, as the generation LLM used (gpt-oss-120b) supports only up to 128,000
tokens including overhead. Token counts have been approximated by counting the number of
characters per document and dividing the resulting count by 4, since this method was a lot
faster than counting the number of tokens in Python and precise enough for the experiment.
This approximation is based on the observation that English text averages approximately 4
characters per token for GPT-style tokenizers. For standard English prose, this method typically
yields estimates within 10-20% of the actual token count. The approximation tends to slightly
underestimate token counts since technical content, code snippets, or non-English text may
have different character-to-token ratios. Given that the threshold was set at 100,000 tokens with

a model context of 128,000 tokens, this margin of error was acceptable for the filtering purpose.

The removal primarily affected questions from the NarrativeQA dataset, removing 370
questions. Questions from the Novel QA dataset were excluded before processing as its full-novel
documents exceeded practical length limits.

In the original paper, documents which exceeded the model context were truncated from the
end of the context. Truncating has the potential problem of removing important information
when it is located in the end of the document. Therefore, and since this affected only 370
questions of the total 11,758, it made more sense for the experiment in this thesis to remove
the too long questions instead of truncating them.

Some datasets contained thousands of questions (2WikiMultihopQA, HotpotQA, MuSiQue,
NarrativeQA, QuALTY, QASPER) while others had fewer than 100 (e.g., Coursera with only

20

Method and Experiment Architecture

54). Each dataset was capped at 800 questions to achieve better balance. Table 2 shows the full
overview over the number of questions per dataset before and after filtering. The final dataset
spans eleven sub-datasets with more even representation, allowing for systematic comparison

across retrieval methods.

The filtering choices were deliberate and reflect the intended scope of this research. This thesis
focuses on QA tasks where source documents are moderately sized (under 100k tokens), covering
the vast majority of practical RAG applications such as technical documentation, knowledge
bases, and business documents. Full-novel or book-length retrieval represents a distinct problem
domain with different characteristics: it typically requires long-range narrative comprehension,
character tracking across hundreds of pages, and synthesis of information spread across very

large spans of text. This led to the exclusion of the Novel QA dataset for the experiment.

While dense retrieval methods may offer advantages in such long-context scenarios, this thesis
explicitely scopes its investigation to the more common use case of retrieval over document
collections of moderate length. This scoping decision means the findings should be interpreted
as applicable to typical enterprise and knowledge-management RAG deployments rather than
to specialized literary or long-form narrative applications.

Beyond scope considerations, the reductions were also pragmatic (compute/runtime) and
methodological (avoid long-context failures that dominate variance without informing retrieval
quality).

For validation purposes, a sample of 25 questions per dataset (275 total) was selected for

manual review.

Dataset # of questions in the original | # of questions after filtering
dataset
2WikiMultihopQA 884 800
Coursera 54 54
HotpotQA 1020 800
MultiDoc2Dial 158 158
MultiFieldQA 121 121
MuSiQue 1523 800
NarrativeQA 1709 800
Natural Questions 351 351
QASPER 2453 800
QuALTY 2523 800
TOEFL-QA 962 800
Total 11,758 6,284

Table 2: Number of questions per dataset before and after filtering.

21

Method and Experiment Architecture

3.2 Model Selection

The gpt-oss-120b model was used, a state-of-the-art open-source model released by OpenAl,
with a 128k token context window [55]. This choice was driven by reproducibility concerns and
institutional access. The model is used to generate the actual answer to the question as well as

for query rewriting in some retriever variants (see Section 3.3.2).

Since the original dataset was filtered using OpenAl’s GPT-40, there may be questions that
gpt-o0ss-120b can answer from world knowledge that GPT-40 could not, or vice versa. Further
adding to this, gpt-oss-120b has its training cutoff in June 2024 [55], whereas GPT-40 was
trained on data collected until October 2023 [56]. The None baseline (described in Section 3.3.2)
helps to check for this. Re-running the original experiment used to create the original dataset
would be needed to update it for gpt-oss-120b, however, this is out of scope for this thesis.

For vector embeddings, the Qwen3-4B embedding model was used, selected for its strong
benchmark performance on the MTEB benchmark and leaderboard [57].

To rerank search results, the Jina Reranker v3 model was used, a lightweight, high-perfor-
mance model based on Qwen3-0.6B and released in October 2025 [58]. The model uses a novel
architecture which processes all documents and the query in the same context window, enabling
the model to cross-reference different documents against each other and not just to the query.

It achieves a BEIR performance of 61.85 nDCG@10 with only 0.6B parameters [58].

3.3 Experiment Architecture

User Query

(q)

Relevant
Retriever Documents Generator

(R) (G)

Documents

(D)

Search Strategy

Search Engine
(S) Answer

(a)

Figure 2: Based on the RAG definition in Figure 1, this shows the version used in the experiment in this

thesis, adding a search engine which the retriever uses along with a search strategy to retrieve documents.

Figure 2 shows the architecture of the RAG system used in the experiment of this thesis. The
implemented architecture separates the concepts of retriever and search engine to enable a
systematic comparison of different components. This allows to create a matrix of experiments,
testing different query strategies against different search algorithms. Decoupling the retrieval
and search step makes it possible to freely change the underlying search engine, making the

design very suitable for this experiment.

22

Method and Experiment Architecture

Compared to the architecture introduced in Section 2.2, this makes the actual search of the

retrieval part a separate step.

3.3.1 Search Engines

Four primary search backends have been implemented:

1.

SQLite Full-Text Search: Combines SQLite Full-Text Search with BM25 to rank the
results [59]. Since many specialized full-text search databases on the market ultimately rely
on BM25 or variants, this implementation in SQLite was treated as representative of this
class of ranking algorithms. Other databases in this class are ParadeDB [60], Elasticsearch
[61], SingleStore [62], and MongoDB [63].

pgVector: Uses PostgreSQL with the pgvector extension [64] to do semantic search using
cosine distance search over embeddings generated by the qwen3-4B embedding model with
2,560 embedding dimensions. Data is stored using the halfvec data type and an Hierarchical
Navigable Small World (HNSW) index, resulting in approximate nearest neighbor search
when querying the embeddings.

Typesense: For each search, it first computes the frequency of search query tokens, the edit
distance, and proximity to other words in the document corpus. In a second step, it uses a

tie-breaking algorithm to rank results [65].

Meilisearch: Similar to Typesense, this database computes relevancy by different factors.
By default these factors are number of matched query terms, typo distance, proximity
between words, user-supplied attribute and sort order, and the similarity of the matched
words with the query words in ascending order of importance [66]. Finally, results are sorted
with a bucket sort algorithm according to the score calculated in the first step [67]. For the

experiment in this thesis, the default ranking order has been used.

Additionally, two baseline implementations were included:

1.

None: Returns no documents, serving as a lower baseline to verify the model cannot
answer questions from parametric memory alone. If the used LLM can still answer questions

correctly, it indicates the question is part of its world knowledge, even if it wasn’t for GPT-4o.

. Golden: Always returns only the correct document (the single context associated with each

question, which for multi-document datasets contains all merged source texts), simulating a
perfect retriever. This represents the upper baseline and achieves 100% document recall by

definition.

Each search engine returns up to 10 documents per query by default, along with a relevance

score to indicate how useful the result might be for the search term. In the case of SQLite

Full-Text Search (FTS), this is the calculated BM25 score, for pgVector this is L

1+ Cosine Distance’

Typesense and Meilisearch return their own relevancy scores as returned from their ranking

algorithms. For the None search engine, since no documents are returned no score is returned

either. The Golden search engine always returns a score of 1.

23

Method and Experiment Architecture

The score is passed along with the document to the LLM when it generates the response.
This design choice was not ablated; future work could re-run a subset of configurations without
score information in the generator context to investigate whether providing the scor across
search engines influences the generation result. The full generation prompt can be found in

Appendix A.1.

3.3.2 Retriever Types

Each search engine can be queried through four retriever architectures:

1. Passthrough: Forwards the query directly to the search engine without modification. When
searching with the Embeddings Search engine, the Passthrough retriever is not used due to
the nature of embeddings, which stores and returns only chunks of text. Therefore, Chunk
and Passthrough in embeddings represent the same retriever types and only ChunkRetriever

is used.

2. Search: Uses an LLM? to rewrite the query into a more effective search query before passing

it to the search engine. The full prompt used to rewrite the query is listed in Appendix A.2.1.

3. Keyword SearchRetriever: Uses an LLM® to generate keywords from the question, then
searches for each keyword separately. The full prompt used to rewrite the query is listed in
Appendix A.2.2. Results are aggregated and filtered to the top-10 documents by search engine
score. This approach aims to leverage the strengths of keyword-based search while using
full-text search infrastructure. Note that the keyword generation prompt was designed with
FTS in mind and was not specifically tuned for embedding-based retrieval, where natural

language queries might perform better than isolated keywords.

4. ChunkRetriever: Similar to Passthrough, but this retriever returns document chunks

rather than full documents. See Section 3.3.3 for details.

5. Fulldocs: This retriever is only used when using the Embeddings Search Engine. It returns
the full documents whose chunks have been returned while searching for embeddings. Because
all other search engines return full documents when the ChunkRetriever is not used, this
retriever aims to control for cases when the LLM would generate a correct response simply
because it had the full document available. The score of the retrieved full documents is the

same as of the chunks that were originally retrieved.

All search-engine-specific index and ranking settings (tokenization, stopwords, stemming/
synonyms, BM25/HNSW parameters, and Typesense/Meilisearch ranking configuration) are
documented in Appendix A.5.

3.3.3 Chunking Strategy

When building RAG systems, an important decision involves whether to return full documents

or chunks. This is due to the “lost in the middle” phenomenon which suggests that models

In this experiment, the same model as for all other LLM tasks, gpt-o0ss-120b was used. It would also be
possible to use a smaller, faster LLM or a fine-tuned variant for search term or keyword generation with
potentially different results.

24

Method and Experiment Architecture

may struggle with extremely long contexts. Other research on Long Context observed how
LLMs struggle especially to use information that is in the middle of their context, opposed to
information that is at the beginning or the end of the provided context [68]. This leads to the
conclusion that Long Context is not a silver bullet to improving the answering capabilities in

a RAG system.

Instead, providing smaller, more relevant chunks of documents may reduce context overhead
and yield better results. To examine this hypothesis, the chunk retriever was added to only

search and retrieve chunks of documents.

In the conducted experiment, these chunks were pre-generated and stored in each search
engine for better performance, though runtime generation based on search matches is a potential
alternative. Chunks were created with a maximum size of 512 characters and an overlap of 50
characters between consecutive chunks. The chunking algorithm prefers sentence boundaries
when splitting, avoiding cuts in the middle of sentences where possible. TODO das klingt nicht
richtig Ultimately, the chosen implementation depends on the search engine used and whether
the results provided by it have enough precision to create good chunks. During retrieval, this is
similar to the Passthrough retriever with the key difference of returning chunks instead of full
documents.

For each search engine, full document retrieval and chunk-based retrieval were tested. This
allows to test whether providing focused, relevant chunks outperforms full document context.

For embedding-based search, the Passthrough and Chunk retrievers are functionally equiva-
lent, the Passthrough retriever for embeddings was therefore excluded from comparative analysis

to avoid redundant data points.

3.4 Reranking
Reranking is a refinement step which uses a specially trained reranking model to reorder the
retrieved results, putting the most relevant on the top of the list. Section 2.5.5 explains reranking
in more detail. In theory, reranking should be able to improve especially noisy F'TS results for
usage in RAG.

In this experiment, reranking is applied using Jina Reranker v3 after initial retrieval. This
model, released in October 2025 and based on the Qwen3-0.6B LLM, represents current state-
of-the-art performance on the BEIR benchmark while remaining relatively lightweight [58].

Experiments were performed on all search configurations both with and without reranking on
the full dataset to isolate its contribution. This allows evaluation of both base retrieval quality

and the impact of reranking across different search engine choices.

In the architecture presented in Figure 2, reranking happens as part of the retriever.

25

Method and Experiment Architecture

3.5 Evaluation
The evaluation method employed for the experiment combines manual review with automated

assessment.

First, approximately 1,000 generated answers with different retrieval methods for the previ-
ously selected 275 sample questions were evaluated manually as correct, incorrect or partially

correct. This provides ground truth for automated validation.

Then, a model-as-judge approach was developed where an LLM' receives the question, correct
answer, and generated answer, then classifies the response as correct, incorrect or partially

correct.

Multiple-choice datasets (QUALITY, TOEFL-QA, Coursera) are evaluated identically to
open-ended questions. The generation model outputs free-form text responses which may
include option letters, option text, paraphrases, or combinations thereof (e.g., “B. she wore
free-flowing costumes and D. she danced without shoes” or “The class was canceled because
there weren’t enough students enrolled (Option A)”). The expected answers for multiple-choice
questions are stored as option letters (e.g., “B” or “BD” for multi-answer questions). The
judge performs semantic comparison rather than exact string matching, determining whether
the generated response conveys the same meaning as the expected answer. For multi-answer
multiple-choice questions, the partially correct category captures cases where the model iden-

tifies some but not all correct options.

The model-as-judge approach was first introduced in 2023 by Zheng et al. [69]. Originally
used to rate answers by different chat LLM, it matched the results of human annotators by 80%.

To run and optimize the prompt, the dspy Python library has been used. A MIPROv2 optimizer
was employed to improve the prompt, an optimizer designed to improve multi-stage Language
Model Programs by refining both free-form instructions and few-shot demonstrations at the
same time to maximize a final task metric. In the library, many prompt variants are generated
which are then searched using a Bayesian surrogate model to approximate the optimal prompt
and search through proposed prompt combinations [70]. Results are validated using validation

data that was collected manually.

Additionally, dspy simplifies using and managing the prompts in the code, streamlining the
implementation.

The full optimized evaluation prompt can be found in Appendix A.3.

After generating training data manually and testing various models and prompts, 92% accu-
racy was achieved using the automated approach. This 92% figure represents the optimization
metric calculated during prompt tuning on the manually labeled training data used by dspy.

To independently verify the evaluation quality, 216 answers generated with the golden

retriever that also had manually rated labels available from the original sample data collection

0Here, gpt-0ss-120b has been used as well.

26

Method and Experiment Architecture

were compared. Answers where the model replied that it did not know the response were
excluded!. For each question, the binary correctness judgments were compared between manual

and automatic methods:

Agreement Rate = (Number of Matching Ratings) x 100%

Total Number of Paired Ratings

This verification yielded an 84.7% agreement rate with a Cohen’s Kappa of 0.618, indicating
“substantial agreement” according to the interpretation scale presented by Landis and Koch
[71]. The difference between training accuracy (92%) and validation agreement (84.7%) is
expected: the optimization metric measures performance on the training data used to tune the
prompt, while the agreement rate reflects real-world performance on previously unseen answers

evaluated after the experiment.

While fine-tuning could potentially improve this further, the achieved reliability was deter-
mined to be sufficient for large-scale evaluation in the context of this thesis. Cohen’s Kappa
accounts for agreement occurring by chance, making it a more robust measure than simple
percent agreement, and a value of 0.618 is considered adequate for the experiment in this
thesis where the goal is to identify relative performance differences rather than precise absolute

measurements.

3.6 Experimental Infrastructure
All experimental runs, questions, and model answers are logged in a central database for
analysis. The system is built for robustness, allowing multiple runs to be started without

overwriting previous data.

The question-answering prompt used in the generator follows best practices but required
tuning to prevent excessively long responses. It was empirically observed that when the model
lacks relevant documents, it tends to generate really verbose but incorrect answers, particularly
when only irrelevant documents are retrieved. However, when no documents are found, the
model reliably responds with “I don’t know” as instructed. This matches current research
findings showing that LLMs perform worse when the context contains irrelevant information

than when the context is empty [68].

3.7 Key Considerations and Limitations
The used dataset was originally filtered using GPT-40, while this experiment uses gpt-oss-120b.
Differences in model capabilities and knowledge cutoffs may affect which questions genuinely

require retrieval.

Due to gpt-oss-120b’s 128k token context window, some documents exceed practical limits.
The dataset was filtered by token size to address this, but context window limitations remain
relevant even for newer long-context models due to performance degradation and the “needle

in the haystack” problem.

Cases where the model replied with “I do not know the answer to your question.” as instructed in the
system prompt.

27

Results

All experiments were conducted on a single model with one embedding model. Results may

not generalize to other model families.

In total, 32 configurations were evaluated: 4 search engines (SQLite FTS, pgVector, Type-
sense, Meilisearch) x 4 retrievers (Passthrough, Search, Keyword, Chunk) x 2 reranking options
(with and without), minus the 2 redundant embedding Passthrough configurations, plus the
2 full document retreival configurations, plus 2 baselines (Golden and None). No prompts
or hyperparameters were tuned after inspecting experimental results. The prompts for query
rewriting and keyword generation were designed a priori based on task requirements, and
search engine parameters (e.g., returning top-10 results) were fixed before experiments began.
Hyperparameter optimization was outside the scope of this thesis, which focused on comparing

retrieval strategies under consistent conditions rather than optimizing individual configurations.

4 Results

This chapter presents the experimental results obtained from the evaluation outlined in the
previous section. These results are used to answer the research question of whether full-text
search can be a viable alternative to embedding-based search in RAG systems. The findings
are categorized into results across all datasets in Section 4.1, document recall analysis in
Section 4.1.3, timing analysis in Section 4.2, and the best configurations per dataset Section 4.3

and Section 4.4.

4.1 Overall Performance Across Search Engines
This section presents the broad results of the experiment. It is expected that using external

data via RAG contributes significantly to the results of the QA tasks.

Table 3 presents the comprehensive results across all search engine configurations. The search
engine, retriever, and reranking columns describe the retrieval pipeline components: the search
engine (see Section 3.3.1), the retriever type (see Section 3.3.2), and whether reranking was
applied (see Section 3.4). Answer quality is captured through four percentage-based metrics: the
percentage of correctly retrieved answer documents (Doc Recall), the percentage of questions
answered correctly, partially correct, and the combined correct plus partial rate, all evaluated
using the model-as-judge approach described in Section 3.5. Performance characteristics are
reported through average retrieval time, average completion time, and average total response

time, all measured in seconds and computed across the full set of evaluated queries.

28

Results

= g3 ® = n w w
bl o ~ N— ~—
: I 1 {1
] 5 3 ~ Sl & & g S 2
=] > R~/ Q ° + o= 2 Q
M 2 [=} Q 50 X ey j;‘ — [}

= © A 3] 2 a, n
=} = o 9] m E é
g g Q z)
& o ~) 80 @) a0
(] &) > >
n < 00 <
S £

Golden Passthrough | No | 100.00% | 69.40% | 5.52% | 74.91% | 0.0097 | 1.8689 | 1.8787
None Passthrough | No 0.00% | 7.65% | 1.40% | 9.05% | 0.0000 | 0.9521 | 0.9521
Chunk No 40.07% | 24.59% | 3.51% | 28.10% 0.2264 1.2641 1.4905

un
Yes | 40.12% | 24.06% | 3.41% | 27.47% 0.3291 1.6924 | 2.0215
No | 33.24% | 28.58% | 3.06% | 31.64% | 0.4957 | 9.3811 | 9.8772

Fulldocs
Yes | 37.65% | 31.19% | 3.39% | 34.58% 8.3206 | 34.7021

Embeddings

No 6.71% | 8.06% | 2.50% | 10.56% | 1.4247 | 1.0384 | 2.4631

Keyword
Yes 6.54% | 7.15% | 2.16% | 9.31% | 2.4345 | 1.2453 | 3.6798
No | 27.83% | 17.98% | 2.61% | 20.59% | 0.2364 | 1.1580 | 1.3944

Search

Yes | 27.59% | 16.96% | 2.78% | 19.75% | 0.3448 | 1.1391 | 1.4840

No 7.70% | 1.48% | 9.18% FRUHUZEE (0.9581 EORC[HA)
v |- K | ooss1

Yes 0.53% | 8.10% | 1.38% | 9.48% | 0.0539 | 1.3200 | 1.3739
No 8.290% | 14.82% | 2.52% | 17.34% | 2.0209 | 8.5963 | 10.6173

Keyword
Yes | 10.50% | 16.12% | 2.72% | 18.84% | 6.9150 | 14.0422 | 20.9572
Full-Text Search
No | 20.80% | 22.46% | 2.71% | 25.17% | 0.0867 | 3.8680 | 3.9548
Passthrough
Yes | 27.64% | 25.27% | 2.93% | 28.20% | 1.7182 | 4.5196 | 6.2381
Search No | 21.21% | 22.77% | 2.46% | 25.23% | 1.4125 | 3.9697 | 5.3822
earc
Yes | 25.65% | 24.52% | 2.50% | 27.02% | 3.1187 | 4.2398 | 7.3585
Chunk No | 12.53% | 4.46% | 1.10% | 5.56% | 0.0095 | 1.0940 | 1.1036
un
Yes | 12.56% | 4.71% | 1.24% | 5.95% | 0.1013 | 1.7684 | 1.8697
39.18% 43.64% | 0.2804 | 9.7985 | 10.0789
Keyword
54.69% 4.1565 | 22.8093 | 26.9658
Meilisearch
No | 36.63% | 29.30% | 3.17% | 32.47% | 0.1901 | 9.4851 | 9.6753
Passthrough
Yes | 36.19% | 29.66% | 3.53% | 33.20% | 4.9603 | 9.7008 | 14.6613
Search No | 46.64% | 34.18% | 3.75% | 37.94% | 0.1215 | 8.0988 | 8.2203
earc
Yes | 47.45% | 36.97% | 3.42% | 40.39% | 3.0814 | 8.3723 | 11.4537
No | 11.96% 0.80% 0.2070 N0 1.1583
Chunk
Yes | 11.90% | 3.64% 4.26% | 0.4930 | 1.3147 | 1.8078
No | 46.21% | 37.32% | 3.69% | 41.01% | 1.2029 | 8.4977 | 9.7006
Keyword
Yes | 46.16% | 37.29% | 3.77% | 41.06% | 7.3586 BRAKNENRERIIA(T]
Typesense
No | 32.84% | 29.60% | 3.23% | 32.83% | 0.7932 | 4.6709 | 5.4644
Passthrough
Yes | 33.78% | 30.49% | 3.06% | 33.55% | 5.0499 | 4.8642 | 9.9146
Search No | 39.35% | 34.29% | 3.18% | 37.48% | 0.3036 | 4.1061 | 4.4098
earc
Yes | 39.26% | 33.91% | 2.99% | 36.90% | 2.6623 | 4.4194 | 7.0817

Table 3: Performance per search engine in all run configurations. Values marked in are the
best overall, values in light green are the best per search engine, values marked are the worst
overall, values in light red are the worst per search engine - for configurations except Golden and None.
For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time,

average completion time, and average response time, lower is better.

29

Results

Dataset
Doc Recall
% Correct
% Partial
% Correct-+Partial
Avg Retrieval (s)
Avg Completion (s)
Avg Response (s)

2WikiMultihopQA | 35.32% | 28.42% | 0.86% | 29.28% | 2.2755 | 6.0229 | 8.2985
Coursera 28.14% | 20.83% FREYZ S48 1.7595 | 4.6152 | 6.3747
HotpotQA | 44.58% W 0.91% | 34.12% | 1.8512 | 7.1827 | 9.0340

MultiDoc2Dial 24.02% | 14.19% | 6.61% | 20.80% M 4.0879 | 6.9727
MultiField QA 35.63% | 29.61% | 3.19% | 32.81% | 1.9170 | 5.1421 | 7.0591

MuSiQue 33.02% | 24.55% | 1.81% | 26.36% | 2.0748 B 0
NarrativeQA 25.66% (0 1.57% 2.7864 | 5.0024 | 7.7889
Naturalquestion FESEYAR 29.55% | 4.08% | 33.63% | 1.7119 | 6.4107 | 8.1227
QASPER 16.12% | 6.55% | 22.67% Q¥ 5.1588 | 6.6346
QuALTY 21.53% | 20.75% [\ 21.01% | 2.5239 | 4.0926 | 6.6166

TOEFL-QA 24.64% | 32.23% | 4.01% | 36.24% | 2.4068 990 6.2058

Table 4: Summary per dataset across all run configurations. Doc Recall shows the average percentage
of questions where the gold document was retrieved. Values marked in are the best overall,
values in light green are the 2nd best overall, values marked are the worst overall, values in
light red are the 2nd worst overall. For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is

better, for average retrieval time, average completion time, and average response time, lower is better.

The baseline configurations established the performance bounds for the evaluation: The Golden
retriever, which returned only the correct source document, achieved 69.40% correctness, while
the None retriever, which did not add any documents to the context, achieved 7.65% correctness.
This indicates that 7.65% of questions can be answered correctly by gpt-o0ss-120b based solely
on its parametric knowledge. This is more than what was previously filtered questions by GPT-40
when curating the original dataset — the questions filtered in the dataset could not be answered
at all by GPT-40. These general results across all different configurations provide a first insight
into the overall trends of the experiment and are used to spot any outliers.
Similarly, Table 4 shows the results grouped by dataset across all retrieval configurations.
Meilisearch with keyword search and reranking achieved the highest performance among
the tested retrieval methods at 40.44% correctness. The difference to without reranking was
minimal, only 1.26% lower at 39.18% correctness. Typesense demonstrated similar performance
characteristics as Meilisearch, including only a marginal difference between with or without
reranking for keyword search — achieving 37.29% correctness with reranking and 37.32% without

reranking.

30

Results

Full-text search methods via SQLite and BM25 showed varied performance depending on the
retrieval strategy. Simple direct search via the passthrough retriever yielded 25.27% correctness
with reranking, on par with search in embeddings. With search query rewriting, performance
slightly dropped to 24.52% correctness with reranking and 22.77% without reranking. Key-
word-based full-text search achieved 16.12% correctness with reranking and 14.82% without
reranking. These results suggest that the search query generation strategy performs comparably
to direct passthrough search, likely due to the nature of full-text search mechanisms. Reranking

has a small effect (roughly 2%), but the difference is modest.

Chunk-based embeddings achieved 24.06% correctness with reranking and 24.59% without
reranking. When passing the full document of the retrieved chunks to the LLM, a slighly higher
28.58% correctness was observed. With reranking, these results were improved by almost 7%

to 31.19%, representing the best results for the Embeddings Search Engine.

Keyword-based embedding search performed worst for the embedding search engine at 7.15%
correctness with reranking, falling slightly below the baseline of 7.65%. Without reranking,
performance is slightly better at 8.06%. This suggests that incorrect source retrieval actively

degraded model performance.

Chunk-based retrieval with Meilisearch and Typesense performed notably poorly. Meilisearch
chunk retrieval achieved only 4.71% correctness with reranking and 4.46% without reranking,
Typesense chunk retrieval achieved 3.64% correctness with reranking and 3.43% without
reranking. Both fall below the None baseline. These results indicate that the wrong chunks
were retrieved, introducing noise that led the model to very wrong answers and degraded LLM

performance below its baseline parametric knowledge.

Despite poor chunk performance, direct search with Meilisearch achieved respectable results
at 29.66% correctness with reranking and 29.30% without reranking, on par with full document
embeddings search and better than standard full-text search. When search queries were gener-
ated, Meilisearch achieved an even better score of 36.97% correctness with reranking and 34.18%

without reranking.

4.1.1 Best Embedding vs. Full-Text Search

To analyse whether a systematic performance difference exists between embedding-based and
full-text search approaches, the best-performing configuration from each category was compared
across all evaluated datasets. Table 5 presents the results of the best full-text search approach
(one of SQLite FTS, Meilisearch, or Typesense) against the best embedding-based approach
for each dataset.

The results reveal a consistent and substantial performance gap favoring full-text search
methods. This difference becomes especially clear when examining only the % Correct metric,
as illustrated in Figure 3. Full-text approaches outperform embedding-based retrieval on all
datasets except TOEFL-QA, and tie on Coursera with a correctness of 35.19%. On TOEFL-
QA, embeddings achieve 65% correct versus 46.62% for full-text search (an 18.38% advantage).

31

Results

Only on the QUALITY dataset passing chunks from embeddings results performed better, in
all other cases passing the full document to the LLM yielded better results.

The most substantial gaps are observed on multi-hop reasoning datasets. 2WikiMultiHopQA
exhibits the largest disparity (62.59% vs. 19.38%, a 43.21% difference), followed by Multi-
FieldQA (73.55% vs. 35.54%, a 38.01% difference) and HotpotQA (64.50% vs. 31.87%, a 32.63%
difference). For 2WikiMultiHopQA and MultiFieldQA, keyword-based matching appears to
provide more reliable retrieval than semantic similarity.

Mid-range gaps are observed on MultiDoc2Dial (37.97% vs. 17.09%, a 20.88% difference) and
QuALTY (44.38% vs. 31.13%, a 13.25% difference). Smaller gaps appear on MuSiQue (40.50%
vs. 34.62%, a 5.88% difference), Naturalquestion (51.85% vs. 48.15%, a 3.70% difference),
QASPER (26.62% vs. 22.00%, a 4.62% difference), and NarrativeQA (18.41% vs. 13.75%, a
4.66% difference), while Coursera is a tie at 35.19%.

Across all datasets, full-text search approaches outperform embeddings by an average of

13.50%.

32

Results

g — 0 —~
) e} B, = 2
: : s |2 8| E| £ L] & & ¢
] M 9 = o = ;‘ + = o a,
+ = & Q |3 ey 0
5’ % 5 3 3) @) A~ o Q g Q
£ = = 8 X X 5 « O ~
[0} @) o0 o0
: §lr| &
X <
Embeddings Fulldocs No BEXPVZM 19.38% | 1.38% | 20.75% | 0.5817 | 8.1221 8.7043
2WikiMultihopQA
Typesense Keyword No | 82.67% | 62.59% | 1.50% | 64.09% | 0.8358 | 8.7734 | 9.6093
G Embeddings Fulldocs No | 48.15% | 35.19% | 38.89% | 74.07% | 0.4420 | 8.3087 | 8.7509
oursera
Typesense Keyword Yes | 50.00% | 35.19% PERRSZN 77.78% | 6.1540 | 22.3476 | 28.5016
- QA Embeddings Fulldocs No | 33.88% | 31.87% | 0.88% | 32.75% | 0.4864 | 12.3024 | 12.7892
otpot
Typesense Search Yes | 76.50% | 64.50% | 1.50% | 66.00% | 1.1555 | 4.2944 | 5.4500
Embeddings Fulldocs Yes | 22.15% | 17.09% | 5.70% | 22.78% | 31.4385 | 3.9699 | 35.4089
MultiDoc2Dial
Meilisearch Keyword Yes | 65.82% | 37.97% | 12.66% | 50.63% | 3.8125 28.5387
Embeddings Fulldocs Yes | 39.67% | 35.54% | 1.65% | 37.19% | 22.3970 | 6.8473 | 29.2445
MultiFieldQA
Meilisearch Keyword No | 82.64% eIy 4.96% Belabzay 0.2541 | 9.3839 | 9.6380
MuSIQ Embeddings Fulldocs Yes | 44.75% | 34.62% | 2.12% | 36.75% | 25.0087 | 13.5106 | 38.5196
uSiQue
Meilisearch Search Yes | 50.75% | 40.50% | 1.62% | 42.12% | 2.7113 | 11.6012 | 14.3124
Embeddings Fulldocs Yes | 27.50% 1.12% 6.5069
NarrativeQA
Meilisearch | Passthrough | No | 40.67% | 18.41% | 2.11% | 20.52% | 0.2267 | 8.4513 | 8.6781
Embeddings Fulldocs Yes | 70.09% | 48.15% | 5.70% | 53.85% | 10.0871 | 11.9983 | 22.0855
Naturalquestion
Meilisearch Keyword | Yes [BERUEVAN 51.85% | 5.70% | 57.55% | 3.9187 | 13.7215 | 17.6403
QASPER Embeddings Fulldocs Yes | 24.38% | 22.00% | 9.00% | 31.00% | 13.4800 | 8.7037 | 22.1838
Meilisearch Keyword Yes | 33.38% | 26.62% | 10.25% | 36.88% | 2.9298 | 8.4380 | 11.3678
Embeddings Chunk No | 34.44% | 31.13% 31.25% B 0 0
QUALTY
Meilisearch Keyword | Yes | 53.62% | 44.38% | 0.12% | 44.50% | 4.0963 | 11.4563 | 15.5526
TOEFL-QA Embeddings Fulldocs Yes | 71.00% | 65.00% | 5.75% | 70.75% | 22.8609 | 5.1679 | 28.0291
i Meilisearch Keyword Yes | 50.88% | 46.62% | 6.38% | 53.00% | 4.4158 | 13.4178 | 17.8336

Table 5: Results for the best Full-Text Search configuration (One of BM25-based SQLite Full-Text

Search, Meilisearch or Typesense) vs. the best embedding-based configuration. Doc Recall shows the

percentage of questions where the gold document was retrieved. Values marked in are the

best overall, values in light green are the best per search engine, values marked are the worst

overall, values in light red are the worst per search engine - for configurations except Golden and None.

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time,

average completion time, and average response time, lower is better.

33

Results

85 F B Best Embeddings approach |
50 ; [0 Best Full-Text Search approach]

73.55%

75 £

70

62.59%
64.5%
65%

65 F
60
55
50 F
45

% Correct

40

35.19%
35.19%

31.87%

35
30 F
25 b

19.38%

20
15 F
10F

Coursera
HotpotQA
MultiFieldQA
MuSiQue
NarrativeQA
QASPER
QuALTY
TOEFL-QA

—_
<
=E
a
N
©
o
a
=
=
=

2WikiMultihopQA
Naturalquestion

Dataset
Figure 3: The best embedding-based and best Full-Text search approaches with their % Correct, as

shown in Table 5.

4.1.2 Statistical Significance

To verify that the observed performance differences are not due to chance, statistical tests were

performed on the key comparison between full-text search and embedding-based retrieval.

The best full-text search configuration (Meilisearch with keyword generation and reranking)
achieved 40.44% accuracy (95% CI: 39.23%-41.65%, n=6,284), compared to 31.19% (95% CI:
30.06%-32.35%, n=6,284) for the best embedding-based configuration (full document retrieval
with reranking). The confidence intervals were computed using the Wilson score method, which
provides more accurate coverage for proportions than the normal approximation. The non-

overlapping confidence intervals indicate the difference is statistically meaningful.

Since both methods answered the same set of questions, McNemar’s test for paired data
was performed. McNemar’s test is designed for paired nominal data and specifically examines
whether the disagreements between methods are systematic. The test focuses on questions where
the two methods disagreed and determines whether one method systematically outperforms the
other. The result (x? = 163.2, p < 0.001) confirms that full-text search systematically outper-

forms embeddings: FTS correctly answered 1,321 questions that embeddings missed, while

34

Results

embeddings only succeeded on 740 questions where FTS failed, representing a net advantage

of 581 questions (9.2% of the test set).

These results demonstrate that the performance advantage of full-text search over embedding-
based retrieval is not attributable to random variation but represents a genuine and substantial

difference in retrieval effectiveness.

4.1.3 Document Recall

To separate retrieval failure from generation failure, document recall was measured for each
retrieval configuration, shown in the Doc Recall column in all results tables (Table 4, Table 3,
Table 6). Document recall measures if the source document containing the answer was retrieved,
regardless of whether the LLM generated a correct answer from it. It can differ between config-
urations with and without reranking, even when using the same search engine and retriever,

see Section 5.6 for an explanation.

The Golden retriever achieves 100% recall by definition, while the None retriever achieves
0% as expected. Looking at the results per retrieval configuration in Table 3, even the Golden

retriever only achieves 69.40% answer correctness.

Among the evaluated retrieval methods, Meilisearch with keyword generation achieved the
highest document recall at 56.25%, followed by Typesense with keyword generation achieved
46.21% document recall. Embedding-based retrieval peaked at 40.12% document recall with
chunk retrieval, while only 37.65% when retrieving full documents, both with reranking. Full-

text search with chunk retrieval showed the lowest recall at just 0.52%.

Figure 4 visualizes the relationship between document recall and answer correctness across
retrieval configurations. The scatter plot shows a positive correlation: configurations with higher
document recall tend to achieve higher correctness rates. The strength of this relationship varies
by search engine type: embedding-based configurations at approximately 40% recall achieve
17-25% correctness, while full-text search engines show higher correctness rates at comparable

recall levels.

For the case where embedding search was used but the full document was passed to the LLM,

the results appear to be in line with FTS methods, even though they achieved lower % correct.

35

Results

45 T T T T T T T T T T T

40 | .

% Correct

15 ¢ A B Embeddings [Full-Text Search _
Meilisearch B Typesense]
10

* @ Passthrough A Keyword 1
A % Chunk @ Search 1
5 . A Full Document 1]
B Reranked D Not Reranked

O U TR YT SRR T TR SRR SN T T TN ST ST SN NN SN ST S SR N SR ST SN SR NN SHNY ST ST T SN ST T ST S N T S SR S— d— PR — PR — TV S T S —
0 5 10 15 20 25 30 35 40 45 50 55 60

Document Recall (%)
Figure 4: The relationship between document recall and % correct. Each point in the diagram represents

a search engine configuration, colored by search engine type and distinguished by shape. Golden and

None baselines are excluded.

4.2 Timing Analysis

Analyzing the response times of different configurations was done to see whether the retrieval
method used has an effect on response times. If one retrieval method would turn out to be
excellent in retrieval quality but takes a really long time to answer queries, that would render it
unusable for real-time chat applications — even though the qualitative results might be better.
Or, viewed from another angle, if the retrieval quality is high but response times are poor,

further research could be conducted to see if the response time can be improved.

It is expected that adding different RAG mechanisms adds latency, especially when combined
with reranking. Latency with the None retriever should be almost zero, with the Golden retriever

it should be near-zero.

The timing measurements reported in this section are descriptive observations. The exper-
iment relied on a university-hosted GPU instance where other users may have accessed the same
resources simultaneously, introducing variability in response times. Therefore, timing results
should be interpreted as indicative patterns rather than precise performance benchmarks.

Timing results across search engines (as shown in Table 3) revealed consistent patterns across
configurations. Chunk-based retrieval consistently demonstrated the fastest retrieval times,
likely because less data needed to be retrieved and transferred from the database. Full-text
search with chunks showed the fastest overall performance.

The best-performing configurations when looking at % Correct, Meilisearch and Typesense

with keyword retrieval, exhibited notably longer total response times compared to other

36

Results

methods in the observed data. All of this can be attributed to the longer completion time when

using these search engines.

In the observed measurements, Meilisearch keyword retrieval showed average total response
times of 26.97 seconds with reranking and 10.07 seconds without reranking. Of this, 22.81
seconds have been spent in generation with and 9.78 seconds without reranking. Typesense
showed an average of 36.28 seconds for keyword search with reranking and 9.70 seconds without.
Similarly to Meilisearch, 28.92 seconds of the 36.28 seconds have been spent on average on the

generation with reranking, vs. 8.50 seconds without reranking.

This extended generation time suggests that more documents were retrieved and processed
by the language model. Figure 5 shows the the generation time compared to the number of
retrieved documents for Typesense with keyword generation reranked as configuration with
the longest completion times. The diagram shows an upward trend of the median response
time (indicated by the line in the box charts), suggesting an association between number of
documents retrieved and response time, which is consistent with this hypothesis.

To control for the potential confounding effect of different document return counts across
configurations, Figure 6 presents the Pearson correlation between average content length and
average completion time. Content length serves as a proxy for document return volume, since

configurations returning more documents would be expected to have higher total content length.

160_ T T T T T T T T (l) T T —]
S o) o o] o) 8 e
140 5 5 3 o ']
_ ° 8 8
& - o 2 a Q 8
T I B
3 o o 8 o) ¥ 2
£ 100 ©]
5}
E 8o - 8 B
H80 o
=i
2 60} i
=
N
g 40 7
Q
o
20 r 7
O
0F i T -4]
0 1 2 3 4) 6 7 8 9 10

Number of Retrieved Documents
Figure 5: The number of retrieved documents vs. the completion time in seconds for the Typesense

configuration with keyword search and reranking.

37

Results

Typesense + Search - 0.9522 178206 5.38 3
Typesense + Passthrough (Reranked)- 0.9482 210143 6.27
Full-Text Search + Search (Reranked) - 0.9476 250993 7.59

Full-Text Search + Passthrough - 0.9473 257065 7.60 9
Typesense + Passthrough - 0.9464 209006 6.26
Typesense + Search (Reranked) - 0.9428 179181 5.68
Full-Text Search + Passthrough (Reranked) - 0.9203 250600 7.81

é Meilisearch + Search - 0.9042 346208 9.87 B
:% Meilisearch + Search (Reranked) - 0.9024 346010 10.16
E Meilisearch + Passthrough (Reranked) - 0.8901 378103 10.88

E Typesense + Keyword - 0.8872 328291 9.33 -0
E: Meilisearch + Passthrough - 0.8421 380801 10.68

Typesense + Keyword (Reranked) - 0.8070 337380
Full-Text Search + Keyword - 0.7867 389756 10.78 |

Meilisearch + Keyword - 0.7802 368573 10.04

Meilisearch + Keyword (Reranked) - 0.5769 369645 23.51

Full-Text Search + Search 0.4008 258827 7.92
Full-Text Search + Keyword (Reranked) 0.3074 365449 15.60 -2
Golden + Passthrough 1.86
I
(@ K/)
0, g >
% % & o $ o
%, U %,
% % “,
< %,
© %
%,2(2
¢ “,
£ ‘%
(>
% @,
%, %
(‘1& 4
£2

Figure 6: Pearson correlation between average content length and average completion time per retrieval
configuration. Content length is defined as the sum of character counts across all documents used to
answer a question. Chunk-based retrieval configurations, including embedding-based approaches, are
excluded because character counts reflect full document lengths rather than the subset of text contained

in retrieved chunks.

The analysis in Figure 6 reveals that document return volume does not systematically explain
performance differences between retrieval methods. No clear correlation between average content
length and completion time is visible for Typesense or Meilisearch configurations. While the
Typesense keyword search with reranking configuration shows a high correlation of 0.8070,
this does not explain why this configuration’s completion times are approximately three times
higher than other configurations with comparable or greater retrieved content. The causal
mechanism for these timing differences remains unclear; infrastructure variability from shared

GPU resources may be a contributing factor. This finding suggests that the observed accuracy

38

Results

differences between full-text search and embedding-based retrieval are not confounded by

systematic differences in document return counts.

Golden and None retrievers expectedly demonstrated the fastest performance since they spent

practically no time in retrieval at all and only need to return the correct or no document.

Looking at observed retrieval times per dataset, the results varied considerably across datasets
and configurations. In the measurements, NaturalQuestion exhibited the longest average
response time at 40 seconds with the Typesense keyword search and reranking. The observed
time with Meilisearch for the same dataset resulted in observed averages of 17.6 and 8.5 seconds

with and without reranking.

MultiFieldQA, which achieved the highest overall score, had an observed average response
time of 9.6 seconds for the best-performing configuration (Meilisearch with keyword and no

reranking). With reranking, the otherwise same configuration returned an average of 32 seconds.

4.3 Performance by Dataset

Examining query performance on a per-dataset basis helps identify whether some document
collections yield better results than others, irrespective of the retrieval method used. It is
expected that all datasets will show improvement with retrieval compared to the None baseline,
though some may benefit more than others. The results might show that some datasets work

better with embeddings and some work better with full-text search.

Table 4 summarizes performance across datasets, revealing substantial performance variation
across datasets. Because the results represent aggregates across all configurations, the results are
lower than the best results from Table 3. HotpotQA achieved the highest correctness at 33.21%,
while NarrativeQA achieved the lowest at 9.60%. This represents a substantial performance gap

across different datasets.

The performance distribution across datasets suggests that certain question types or docu-
ment structures are more amenable to retrieval-augmented generation than others. It could also

mean that the quality of documents in the dataset is higher for some than others.

4.4 Top 3 Configurations by Dataset

Going deeper into the results from Section 4.3, the top 3 configurations by dataset will
reveal whether full-text search works better than embedding-based search in general or only
for a certain type of questions. Since the overall results turned out to favor full-text search
(Meilisearch with keyword generation), it is expected that this pattern continues when investi-

gating the top 3 configuration by dataset.

Because it would be impractical to look at all results across all datasets at once, only the top
3 have been selected. Individual results for all datasets and all configurations can be found in

Appendix A.4.

39

Results

- 5 5 R € 3 g E § 2
- g |2 & | g 8 £ 22 E
g A § |5l g | S| 2| E | E|E
; = El e R E s e Sy
0 o > &0 >
S < :1 <
- Golden Passthrough | No | 100.00% | 73.82% | 1.87% | 75.69% | 0.0078 | 1.8018 | 1.8097
- None Passthrough | No | 0.00% | 8.73% | 0.62% | 9.35% | 0.0000 | 0.9279 | 0.9279
2WikiMultihopQA | 1 | Typesense Keyword No | 82.67% | 62.59% | 1.50% | 64.09% | 0.8358 | 8.7734 | 9.6093
i Meilisearch Search Yes | 78.38% | 58.88% | 1.256% | 60.12% | 2.5100 | 8.7439 | 11.2540
3 Search No | 79.18% | 58.48% | 1.12% | 59.60% 8.6500 | 8.7479
- Golden Passthrough | No | 100.00% | 37.04% | 42.59% | 79.63% | 0.0048 | 1.5833 | 1.5880
- None Passthrough | No 0.00% | 20.37% | 46.30% | 66.67% | 0.0000 | 1.1910 | 1.1910
Coursera 1 | Typesense Keyword | Yes | 50.00% | 35.19% BERESEAN 77.78% | 6.1540 | 22.3476 | 28.5016
2 | Embeddings Fulldocs No | 48.15% | 35.19% 74.07% | 0.4420 | 8.3087 | 8.7509
3 | Meilisearch Keyword | Yes | 72.22% | 33.33% [ERAINAN 75.93% | 4.0349 | 23.6872 | 27.7221
- Golden Passthrough | No | 100.00% | 85.38% | 1.36% | 86.74% | 0.0086 | 1.9872 | 1.9959
- None Passthrough | No 0.00% 9.79% | 0.87% | 10.66% | 0.0000 | 1.3115 | 1.3115
HotpotQA 1 Search Yes | 76.50% | 64.50% | 1.50% | 66.00% | 1.1555 | 4.2944 | 5.4500
7 Typesense Search No | 77.20% | 62.83% | 0.87% | 63.69% | 0.1213 | 4.1882 | 4.3095
T Passthrough | Yes | 73.00% | 62.38% | 0.88% | 63.25% | 2.0931 | 4.7807 | 6.8739
- Golden Passthrough | No | 100.00% | 53.80% | 13.92% | 67.72% | 0.0028 | 1.5098 | 1.5127
- None Passthrough | No | 0.00% 1.90% | 1.90% | 3.80% | 0.0000 | 0.8614 | 0.8614
MultiDoc2Dial 1 . Keyword Yes | 65.82% | 37.97% | 12.66% | 50.63% | 3.8125 | 24.7262 | 28.5387
T Melisearch Keyword No | 64.56% | 34.81% | 14.56% | 49.37% | 0.2984 | 8.2198 | 8.5182
3 | Typesense Keyword | Yes | 51.90% | 33.54% | 12.66% | 46.20% | 10.5234 | 16.6333 | 27.1570
- Golden Passthrough | No | 100.00% | 85.12% | 9.09% | 94.21% | 0.0050 | 1.6034 | 1.6085
- None Passthrough | No 0.00% 1.65% | 0.00% | 1.65% | 0.0000 | 0.7428 | 0.7428
MultiFieldQA 1 Keyword No | 82.64% 4.96% 8 0.2541 | 9.3839 | 9.6380
—1 Meilisearch
2 Keyword | Yes | 83.47% | 66.12% | 7.44% | 73.55% | 3.4251
3 | Typesense Keyword Yes | 66.94% | 55.37% | 5.79% | 61.16% | 6.4518 | 25.2383 | 31.6901
- Golden Passthrough | No | 100.00% | 58.08% | 2.10% | 60.17% | 0.0099 | 2.7316 | 2.7416
- None Passthrough | No | 0.00% | 8.38% | 1.23% | 9.62% | 0.0000 | 1.3640 | 1.3640
MuSiQue 1 | Meilisearch Search Yes | 50.75% | 40.50% | 1.62% | 42.12% | 2.7113 | 11.6012 | 14.3124
i Typesense Search Yes | 44.75% | 40.00% | 1.75% | 41.75% | 2.0991 | 7.1443 | 9.2435
3 Search No | 45.75% | 38.35% | 2.10% | 40.44% | 0.2193 | 6.7612 | 6.9805
- Golden Passthrough | No | 100.00% | 43.23% | 5.34% | 48.57% | 0.0315 | 2.4032 | 2.4347
- None Passthrough | No 0.00% 1.36% | 0.00% | 1.36% | 0.0000 | 0.7501 | 0.7501
NarrativeQA 1 Passthrough | No | 40.67% | 18.41% | 2.11% | 20.52% | 0.2267 | 8.4513 | 8.6781
T Meilisearch | Passthrough | Yes | 44.12% 3.75% | 21.50% | 5.9395 | 9.4647 | 15.4044
? Keyword Yes | 42.62% IRIP/A 4.8547 | 17.1963 | 22.0510
- Golden Passthrough | No | 100.00% | 66.38% 70.37% | 0.0120 | 1.8048 | 1.8168
Naturalquestion - None Passthrough | No | 0.00% | 13.68% | 3.70% | 17.38% | 0.0000 | 0.9976 | 0.9976
1 | Meilisearch Keyword | Yes 51.85% | 5.70% | 57.55% | 3.9187 | 13.7215 | 17.6403

40

Results

—_ . o~ R
A R U U R S I
g A S |El oz | S| 2 E 2] 8 8
g ~ ~ A X X 5 o0 O o0
0 o > &0 >
S < g: <
2 Keyword No | 82.05% | 49.00% | 6.27% | 55.27% | 0.2783 | 8.3035 | 8.5819
3 | Embeddings Fulldocs Yes | 70.09% | 48.15% | 5.70% | 53.85% | 10.0871 | 11.9983 | 22.0855
- Golden Passthrough | No | 100.00% | 68.90% | 15.85% | 84.76% | 0.0044 | 1.5973 | 1.6017
- None Passthrough | No 0.00% 0.24% | 0.12% | 0.37% | 0.0000 | 0.7120 | 0.7120
QASPER 1 Keyword Yes | 33.38% | 26.62% | 10.25% | 36.88% | 2.9298 | 8.4380 | 11.3678
—1 Meilisearch
2 Keyword No | 34.02% | 25.85% | 10.00% | 35.85% | 0.1571 | 7.4543 | 7.6114
3 | Typesense Keyword Yes 24.75% | 7.50% | 32.25% | 3.7813 | 20.8751 | 24.6565
- Golden Passthrough | No | 100.00% | 71.81% | 0.74% | 72.55% | 0.0060 | 1.6074 | 1.6135
- None Passthrough | No | 0.00% | 4.29% | 0.00% | 4.29% | 0.0000 | 0.7746 | 0.7746
QuALTY 1 Keyword Yes | 53.62% | 44.38% 44.50% | 4.0963 | 11.4563 | 15.5526
7 Meilisearch Keyword No | 50.98% | 40.20% | 0.37% | 40.56% | 0.3843 | 9.1129 | 9.4972
T Search Yes | 37.38% | 33.62% | 0.50% | 34.12% | 3.3260 | 6.2848 | 9.6108
- Golden Passthrough | No | 100.00% | 88.89% | 7.24% | 96.13% | 0.0011 | 1.1093 | 1.1105
- None Passthrough | No | 0.00% | 19.60% | 3.12% | 22.72% | 0.0000 | 0.8422 | 0.8422
TOEFL-QA 1 Fulldocs Yes | 71.00% | 65.00% | 5.75% | 70.75% PEPRL{EN 5.1679 | 28.0291
7 Embeddings Chunk No | 71.16% | 63.05% | 5.87% | 68.91%
T Chunk Yes | 71.12% | 62.50% | 6.12% | 68.62%

Table 6: The top 3 Search engines with the highest % Correct grouped per dataset, including the Golden
and None results for reference. Doc Recall shows the percentage of questions where the gold document
was retrieved. Values marked in are the best overall, values in light green are the 2nd best
overall, values marked are the worst overall, values in light red are the 2nd worst overall. For Doc
Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time, average
completion time, and average response time, lower is better. Marked values do not include the Golden
and None results.

Table 6 presents the three best-performing search engine configurations for each dataset, addi-
tionally the Golden and None baselines for reference. The results show variation in performance
across different datasets and configurations.

It is directly clear that Typesense and Meilisearch consistently rank among the top performers
across most datasets. This is in line with the results from Table 3.

MultiFieldQA delivered the best overall result across all datasets. Meilisearch with keyword
search and without reranking achieved 73.55% correct answers, approaching the Golden baseline
of 85.12% for this dataset. It achieved 66.12% correct answers with keyword search and
reranking as the second best, showing a gap of 7.43% to the configuration without reranking.

This suggests that reranking may actually harm performance in certain contexts.

41

Results

Typesense with keyword search and reranking reached 55.37% correct answers as the third-

best configuration for this dataset.

NarrativeQA resulted in the worst overall score for a dataset with only 18.41% correctness
with Meilisearch direct search without reranking. This indicates that NarrativeQA represents

a particularly challenging dataset for retrieval-augmented generation.

However, even with Golden retrieval, this dataset only performed at 43.23% correctness and
is thus the second-worst for Golden retrieval, indicating a challenging dataset in general for

LLMs, not entirely only for RAG.

For the Coursera dataset, the number of fully correct answers with the Golden baseline
was 37.04%, while the best search engine (Typesense with keywords and reranking) achieved
35.19%, demonstrating close proximity to the baseline. Notably, the None baseline for the same
dataset achieved 20.37% correct answers, suggesting that this dataset contains questions that

are already partially represented in the world knowledge of the used gpt-o0ss-120b LLM.

While Meilisearch and Typesense dominate the top 3 results across datasets, only the results
from the TOEFL-QA dataset could be answered better with an embeddings approach with
a score of 65.00% for full-document embeddings with reranking. Chunk-based embeddings
without reranking achieved 63.05% correct answers. With reranking, the same chunk-based
configuration achieved 62.50%, about 0.55% lower than without reranking. In the same dataset,
the best performing configurations for Meilisearch and Typesense (both with keyword search
and reranking) achieved only a score of 46.6% and 45.6%, showing a huge gap of roughly 18%

between embeddings and full-text search approaches.

On the Coursera dataset, embedding-based search with full documents returned performed

very similar to Typesense and Meilisearch, each with keyword search reranked.

The highest percentage of partially correct answers was observed in the Coursera dataset,
where Meilisearch with keywords and without reranking achieved 46.30% partially correct
responses. When combining correct and partially correct results (% Correct + Partial), this
configuration reached 77.78%, approaching the Golden baseline of 79.63% for this dataset for
% Correct + Partial.

To highlight the difference of different results per dataset, Figure 7 shows the performance per
dataset for the overall best, Meilisearch with keyword enhancement and reranked. It becomes
clear that there are huge performance differences between the best and worst datasets and

between the datasets overall.

42

Results

70 T T T T T T T T T
66.1%
65 F -
60 F -
55%]
. 55 51.9% E
PR
T 45 f :
8]
3 40F ;
g 35F
8]
S 30 E
e]
Z 25 F E
2 20 :
A]
15 F :
10 F
5F :
0 < = < 3 < g < = e o <
o 5 o 2 o & o S = = o
o)) = "5 S| E = g 17} [al S)4'
o =i O o] n = = op]
jan} Q _8‘ o) P [=] R} = < < £
= O S a = = © c o = =
5 = = £ 5 S < S
— = o =
= g = “ Z
= g E
=
[a\l
Dataset

Figure 7: The performance per dataset for the overall best retrieval configuration as shown in Table 3:

Meilisearch with keyword search reranked.

4.4.1 Baseline Performance With Perfect Retrieval

The gap between Golden retrieval and best-performing retrieval configurations varied consid-
erably across datasets. Figure 8 shows this difference, plotted by dataset.

It is expected that larger gaps indicate more room for improvement in retrieval quality. This
helps contextualize whether current retrieval performance is already perfect, or if substantial

improvements can still be made to achieve retrieval quality.

Most notable are the results from the QASPER and Coursera dataset, where QASPER has
the biggest difference of 42.28%, and Coursera has only 1.85% difference.

The other datasets perform between 10% and 30%.

43

Results

42.28%

25

20

15.83%

15 L 14.53%

Performance difference in %

11.57%

11.23%

10

5

0 < « < = < g < g ~ >~ <
o 5 e £ S = > 8 & & o
2, & - a) = o % [} = i
o ; o [—~ 0n > % wn = —
= 3 =y 3 B = S = = = =)
= © < g] = g < < & a8
Z 2 7 3
z

Dataset

Figure 8: The performance difference from % Correct between Golden and best-performing configu-

ration, per dataset.

4.4.2 Baseline Performance Without Retrieval

To isolate the contribution of retrieval to question-answering performance, the baseline results
obtained with the None retriever were examined. Certain data sets demonstrated substantial
performance even without any retrieval (None baseline). Should retrieval prove unnecessary
for generating satisfactory results, the entire RAG architecture could be eliminated, greatly

simplifying the system. The None baseline is evaluated to determine whether this is the case.

Coursera and TOEFL-QA scored around 20% correctness, closely followed by NaturalQues-
tion with 13.68% and HotpotQA with almost 10%. 2WikiMultiHopQA and MuSiQue both
scored around 8%. QuALITY sits in the middle with 4.29% retrieval correctness. Finally,
MultiDoc2Dial, MultiFieldQA, NarrativeQA and QASPER scored only around 1%, indicating

that performance can be enhanced by a lot with retrieval versus without retrieval.

44

Results

4.5 Overlap in Correctly Retrieved Documents Between Search En-
gines

To determine the potential for hybrid retrieval approaches which combine the results from

multiple search configurations, the overlap in correctly retrieved documents between different

search engine configurations was analyzed using the Jaccard index. The Jaccard index measures

the similarity between two sets as the size of their intersection divided by the size of their union,

ranging from 0 (no overlap) to 1 (complete overlap).

Pairwise Jaccard statistics across all search engine configurations show huge variation: the
average Jaccard index is 0.230, with a minimum of 0.002 and a maximum of 1'2. The low average
indicates that different search engine configurations retrieve different documents correctly,

suggesting that combining engines could improve overall retrieval performance.

The best single engine configuration, Meilisearch with Keyword search and no reranking,
retrieved the correct document for 3,570 questions. When combining all engine configurations
(the union of correctly retrieved documents), 5,616 questions had the correct document retrieved
by at least one configuration. This represents 89.4% of the total 6,284 questions and indicates

a theoretical potential improvement of 33.15% over the best single engine.

Table 7 presents the top 30 search engine combinations ranked by potential retrieval benefit.
The benefit percentage measures the gain from combining two engines compared to using the

better one alone. It is calculated as:

union size — max(size 4, sizeg)

Benefit = x 100

max(size 4, sizeg)

Unlike the Jaccard index, which only measures set similarity, the benefit percentage directly
answers how many additional correct retrievals a combination would provide over using the

best single engine alone.

The highest benefit of 75.0% is achieved by combining BM25-based full-text search with
keyword generation and Typesense chunk retrieval both reranked. Notably, Typesense chunk
retrieval performed poorly as an individual configuration (see Section 4.1), yet it retrieves
documents that BM25-based full-text search misses. The second-highest benefit of 73.8% comes
from the same BM25 configuration combined with Typesense chunk retrieval without reranking.
The third-highest benefit of 73.0% combines embeddings with keyword search and BM25 full-
text search with keyword generation.

Examining the top 30 combinations shows that embedding-based configurations frequently
appear in high-benefit pairings. Combinations of embeddings with various full-text search
methods (BM25, Meilisearch, Typesense) consistently show benefits above 55%. This pattern

is visible in the benefit percentage heatmap shown in Figure 9.

2Combining Chunk-based with and without reranking resulted in a Jaccard index of 1.0, which is not
surprising.

45

Results

Engine 1 Engine 2 S ’q;; ,_5 g

S0 & /m
FTS Keyword Reranked Typesense Chunk Reranked 0.076 99 | 1210 | 75.0%
FTS Keyword Reranked Typesense Chunk 0.075 99 | 1222 | 73.8%
Embeddings Keyword FTS Keyword 0.046 42 | 868 | 73.0%
Embeddings Search Reranked FTS Passthrough Reranked 0.156 | 469 | 2533 | 72.8%
Embeddings Keyword Reranked | FTS Keyword 0.037 33| 871 | 71.9%
Embeddings Search FTS Passthrough Reranked 0.158 | 478 | 2549 | 71.2%
Embeddings Search Reranked FTS Search Reranked 0.138 | 405 | 2536 | 69.6%
FTS Keyword Reranked Meilisearch Chunk Reranked 0.085 | 114 | 1221 | 69.2%
FTS Keyword Reranked Meilisearch Chunk 0.085 | 114 | 1228 | 68.6%
Embeddings Search FTS Search Reranked 0.147 | 432 | 2516 | 66.7%
Embeddings Full Docs Typesense Passthrough 0.222 | 758 | 2657 | 63.5%
Embeddings Full Docs Typesense Passthrough Reranked | 0.226 | 777 | 2658 | 61.8%
Embeddings Full Docs Reranked | Meilisearch Passthrough 0.234 | 888 | 2914 | 60.7%
FTS Keyword Typesense Chunk Reranked 0.062 74 | 1126 | 60.4%
FTS Keyword Typesense Chunk 0.061 74 | 1138 | 59.5%
Embeddings Search Reranked FTS Search 0.117 | 322 | 2436 | 59.1%
Embeddings Search Reranked FTS Passthrough 0.114 | 312 | 2430 | 58.1%
Embeddings Search Typesense Passthrough 0.171 | 562 | 2728 | 57.9%
Embeddings Chunk Reranked Typesense Search 0.262 | 1043 | 2932 | 57.7%
Embeddings Full Docs Reranked | Meilisearch Passthrough Reranked | 0.244 | 911 | 2818 | 57.6%
Embeddings Search Reranked Typesense Passthrough 0.163 | 535 | 2748 | 57.5%
Embeddings Search FTS Search 0.119 | 331 | 2452 | 57.4%
Embeddings Full Docs Reranked | Typesense Search Reranked 0.250 | 966 | 2901 | 56.7%
Embeddings Chunk Typesense Search 0.265 | 1055 | 2932 | 56.7%
Embeddings Chunk Reranked Typesense Search Reranked 0.263 | 1039 | 2910 | 56.6%
Embeddings Chunk Typesense Search Reranked 0.262 | 1039 | 2934 | 56.1%
Embeddings Search Typesense Passthrough Reranked | 0.174 | 578 | 2735 | 56.1%
Embeddings Search FTS Passthrough 0.120 | 330 | 2428 | 56.0%
Embeddings Full Docs Reranked | Typesense Search 0.249 | 970 | 2923 | 55.9%
FTS Keyword Meilisearch Chunk Reranked 0.071 87 | 1141 | 55.6%

Table 7: Top 30 search engine combinations ranked by potential retrieval benefit. Overlap shows
questions where both engines retrieved the correct document. Exclusive shows questions where only one
of the two engines retrieved the correct document. Benefit percentage indicates improvement over the

better single engine.

46

Results

Type Srch R £
Type Srch
Type Pass R 70
Type Pass
Type Kwd R 65
Type Kwd
Type Chk R 60
Type Chk
Meili Srch R 55
Meili Srch
Meili Pass R 50
Meili Pass
Meili Kwd R 45
° Meili Kwd
E" Meili Chk R 10 X
= Meili Chk &
5 FTSSrch R 55 g
g FTSSich A
FTS Pass R
FTS Pass 30
FTS Kwd R
FTS Kwd 25
FTS Chk R
FTS Chk 20
Emb Srch R
Emb Srch 15
Emb Kwd R
Emb Kwd 10
Emb Full R
Emb Full 5
Emb Chk R
Emb Chk

Emb Chk
<)

Emb Chk R
Emb Full
Emb Full R
Emb Kwd
Emb Kwd R
Emb Srch
Emb Srch R
FTS Chk
FTS Chk R
FTS Kwd
FTS Kwd R
FTS Pass
FTS Pass R
FTS Srch
FTS Srch R
Meili Chk
Meili Chk R
Meili Kwd
Meili Kwd R
Meili Pass
Meili Pass R
Meili Srch
Meili Srch R
Type Chk
Type Chk R
Type Kwd
Type Kwd R
Type Pass
Type Pass R
Type Srch
Type Srch R

Search Engine

Figure 9: Benefit percentage heatmap showing potential gain from combining pairs of search en-
gines. Abbreviations: Emb=Embeddings, FTS=Full-Text Search, Meili=Meilisearch, Type=Typesense,
Chk=Chunk, Kwd=Keyword, Pass=Passthrough, Srch=Search, Full=Full Document, R=Reranked.
The heatmap reveals that most pairwise combinations provide limited benefit, with the majority
of cells showing low percentages near zero. Few combinations exceed 50% benefit. Full-text
search with chunk retrieval shows uniformly low benefit when combined with any other

configuration, consistent with the poor individual performance of this configuration observed

in Section 4.1.

The combinations of embedding-based methods (the 8 lower rows) with full-text search
methods (left two third columns) show consistently higher benefits than combinations within
the same retrieval paradigm. Embedding-based search with keyword generation in some cases

shows lower benefit when combined with full-text search methods, as both approaches rely on

keyword matching.

4.6 Conclusion
This chapter compared full-text search and embedding-based retrieval across eleven datasets.

The overall results (Section 4.1) established performance bounds: the Golden retriever achieved

47

Discussion

69.40% correctness, while the None retriever baseline achieved 7.65% from parametric knowledge
alone. Meilisearch with keyword search and reranking achieved the best overall performance at

40.44% correctness.

Full-text search outperformed embeddings on all datasets except TOEFL-QA, with Coursera
as a tie, and an average improvement of 13.50%. The gap was particularly pronounced on multi-
hop reasoning datasets such as 2WikiMultiHopQA (43.21% difference) and HotpotQA (32.63%
difference). Chunk-based retrieval with Meilisearch and Typesense fell below the None baseline,

indicating that incorrect chunks actively degrade LLM performance.

The per-dataset analysis (Section 4.3, Section 4.4) revealed substantial variation across
datasets and retrieval configurations, ranging from 73.55% for Meilisearch with keyword search
and no reranking for the MultiFieldQA dataset to 18.41% for Meilisearch with passthrough and
no reranking in the NarrativeQA dataset. Reranking produced mixed results, improving some

configurations while reducing correctness in others.

The overlap analysis (Section 4.5) demonstrated that different retrieval methods correctly
retrieve different documents, with an average Jaccard index of 0.230. Combining all configura-
tions theoretically achieves 89.4% document recall, suggesting substantial potential for hybrid

retrieval approaches.

These findings demonstrate that full-text search represents a viable and often superior

alternative to embedding-based retrieval for RAG systems.

5 Discussion

This chapter interprets the experimental results from the previous chapter.

It begins with the overall finding on full-text search performance in Section 5.1, then examines
dataset-specific variations (Section 5.2), reranking effects (Section 5.3), timing implications
(Section 5.4), chunk-based retrieval failures (Section 5.5), document recall and generation
failure (Section 5.6), retrieval dependency (Section 5.7), and the potential for hybrid retrieval

(Section 5.8). The chapter concludes with practical recommendations in Section 5.9.

5.1 Full-Text Search Performance Compared to Embeddings

The results support the hypothesis that full-text search can perform better in a RAG-Setting
than relying on searching through embeddings, though this finding is not universal across
all datasets. Specialized full-text search databases demonstrate competitive or superior perfor-
mance relative to embedding-based approaches.

With appropriate query formulation, these dedicated full-text search engines substantially
outperform embedding-based retrieval. Meilisearch with keyword search generation achieved
40.44% correctness compared to the best embedding method at 31.19% correctness, a 9.25%
improvement. Importantly, both full-text search and embedding-based retrieval were tested

with equivalent query preprocessing strategies, including keyword generation. While full-text

48

Discussion

search benefits substantially from keyword preprocessing, embedding-based retrieval actually
performed worse with keyword generation (7.15% correctness) than with direct chunk retrieval
(24.59% correctness). This indicates that the advantage of full-text search with preprocessing
is not due to embeddings lacking equivalent preprocessing. Full-text search appears to be

fundamentally better suited to leverage LLM-generated keywords as search terms.

A notable exception is the TOEFL-QA dataset, where embedding-based retrieval outper-
formed full-text search (65.00% vs. 46.62%), demonstrating that semantic search retains
advantages for certain query types requiring deeper language understanding. This exception is

discussed further in Section 5.2 and Section 5.9.

Both Typesense and Meilisearch, which implement search and ranking algorithms beyond
traditional BM25, demonstrated at least comparable performance to SQLite-based full-text
search with BM25, validating their utility as retrieval backends for RAG systems. When
using passthrough or search query modes, the observed ~4% improvement (29.30%—29.60%
vs. 25.27%) is modest enough that it may not generalize without further statistical testing,
which is beyond the scope of this thesis. However, when combined with keyword generation,
the advantage of modern search engines becomes more pronounced, with Meilisearch achieving

40.44% compared to BM25’s best result of 16.12%.

Simple full-text search with BM25 achieves comparable performance of 25.27% when com-
bined with reranking compared to embeddings chunk retrieval at 24.59%, with even lower

complexity than having to use an external database like Meilisearch or Typesense.

With embedding-based retrieval, the results vary slightly when the full document was passed
to the LLM. With the full document, a 28.58% correctness was achieved, vs. 24.59% with only
retrieved chunks (both without reranking). This marginal difference indicates the LLM can
generate better answers when it has the full document, but the improvement is not as good as

what other databases achieve.

The difference in Document Recall between full document and chunks can be explained by
the possibility that retrieving full documents may result in a longer total context that pushed
actually relevant documents out of the final list, particularly when those relevant documents

were ranked lower in the retrieval order.

5.2 Dataset-Specific Performance Variation

The substantial performance variation across datasets (overall worst of 18.41% in NarrativeQA
vs overall best of 73.55% in the MultiFieldQA dataset, each with Meilisearch and the best
result per dataset) indicates that retrieval-augmented generation effectiveness depends heavily
on dataset characteristics. This suggests that certain types of questions, document structures,
or reasoning requirements are more amenable to retrieval augmentation. Understanding these
characteristics when building RAG systems could inform both system design and dataset

selection for future work.

49

Discussion

For the NarrativeQA dataset, the Golden retriever achieves 43.23% correct answers (the
lowest Golden baseline among all datasets), and the best-performing search engine reaches only
18.41% correctness. This dataset shows poor suitability for retrieval-based question answering
overall. The low performance for the best overall configuration suggests that NarrativeQA
involves contexts that are too large or complex for effective retrieval, or that the nature of

narrative questions requires different retrieval strategies than those employed in this thesis.

5.3 Reranking Effects

The marginal or sometimes negative effects of reranking (particularly for Meilisearch and Type-
sense keyword search) suggest that modern search engines may already provide sufficiently good
ranking. For MultiFieldQA, Meilisearch with keyword search and reranking (66.12% correct)
performed worse than the same configuration without reranking (73.55% correct), potentially

by demoting relevant documents.

Other reranking approaches may yield different results, though Jina Reranker v3 represents
current state-of-the-art performance. The marginal improvements observed suggest that for
full-text search engines like Meilisearch and Typesense, the initial ranking quality is already

sufficiently high that reranking provides limited additional value.

On the other hand, reranking improved results for BM25-based full-text search implementa-
tions by a moderate 2.81%, from 22.46% to 25.27% and for embeddings with full documents from
28.58% to 31.19%. This indicates that reranking may still provide a little value when the initial

retrieval ranking is less sophisticated, as is the case with traditional BM25 implementations.

5.4 Timing Implications
As noted in Section 4.2, the timing analysis presented here is descriptive, and results should be

interpreted as observed patterns rather than precise benchmarks.

A potential confounding factor in comparing retrieval methods is that different configurations
may return different numbers of documents, which could affect both accuracy and timing. To
control for this, the Pearson correlation between average content length and completion time was
analyzed (Figure 6). The analysis reveals no systematic relationship between document return
volume and performance differences across retrieval methods. The notably longer completion
times observed for the best-performing configurations (Meilisearch and Typesense with keyword
search) do not appear to be related to more documents being passed to the LLM in these

configurations.

A possible factor to explain these higher response times is infrastructure load. Because the
experiment relied on a university-hosted instance, other users accessing the same GPU resources
simultaneously may have introduced variability in response times.

The observed extended average response time for NarrativeQA (22 seconds with Meilisearch)

is consistent with the hypothesis that context size plays a role, as processing larger contexts

50

Discussion

would be expected to require more computational time, though this interpretation is subject

to the timing measurement limitations noted above.

In the observed measurements, retrieving documents from embeddings appeared faster

(roughly 200ms) than retrieving full documents from an external search engine like Meilisearch.

5.5 Failures of Chunk-Based Retrieval with Full-Text Search

The particularly poor performance of chunk-based retrieval with Meilisearch and Typesense
below the None baseline represents an important failure mode specific to full-text search engines.
When incorrect chunks are retrieved, they seem to actively mislead the LLM, resulting in worse

performance than providing no retrieval augmentation at all.

Notably, this problem does not affect embedding-based retrieval: chunks with embeddings
achieved 24.59% correctness. A plausible hypothesis for this difference relates to how each
retrieval method operates. Embedding-based search captures semantic meaning from text,
allowing smaller chunks to be matched based on conceptual similarity. Full-text search, however,
relies on keyword matching and requires sufficient surrounding context to ensure relevant terms
appear together in the indexed text. When documents are chunked too aggressively for full-text
search, individual chunks may lack the keyword density needed for accurate matching, leading
to retrieval of irrelevant passages. This explanation is consistent with the observed behavior

but has not been empirically validated through keyword density analysis.

For practical RAG implementations using full-text search, indexing complete documents
or larger passages appears preferable to fine-grained chunking strategies that work well with

embeddings.

5.6 Document Recall and Generation Failure

The document recall results reveal a distinction between retrieval failure and generation
failure. Even the Golden retriever, with perfect document recall, only achieves 69.40% answer
correctness. This indicates that approximately 30% of incorrect answers in the best retrieval
case result from generation failure rather than retrieval failure. The LLM fails to extract the

correct answer even when provided with the relevant document.

This finding has large implications for RAG system optimization. Improving retrieval quality
can only address errors caused by missing relevant documents. The substantial portion of errors
attributable to generation failure requires different interventions, such as improved prompting

strategies, better context presentation, or more capable generation models.

The relationship between document recall and answer correctness also differs markedly
between retrieval methods (see Figure 4). Embedding-based configurations show a flatter rela-
tionship: even when document recall increases substantially (from approximately 7% to 40%),
the percentage of correct answers does not increase proportionally, remaining in the 17-25%

range. In contrast, full-text search engines (BM25-based SQLite, Meilisearch, Typesense) show

o1

Discussion

a steeper, more consistent positive relationship, continuing to achieve higher correctness rates

as recall increases to 40%.

This pattern suggests that full-text search not only retrieves documents more effectively but
also retrieves them in a form more amenable to answer extraction. One possible explanation is
that full-text search always returns the full document and the used LLM is sufficiently capable
of extracting the correct facts required for the answer from the whole document. Embedding-
based retrieval may return semantically related documents where the answer is expressed in

different terms, requiring more sophisticated reasoning to connect the query to the answer.

The difference in recall between reranking configurations can differ because the reranker
operates on all documents returned by the initial retrieval stage and re-orders them based on
relevance scores before selecting only the top k documents'®. If the gold document was initially
retrieved but ranked outside the top k positions, reranking may either promote it into the final
set, improving recall, or fail to do so. Conversely, if the gold document was in the top 10 before

reranking, reranking could potentially push it out if other documents (wrongly) score higher.

5.7 Retrieval Dependency per Dataset
When looking at the results for the retrieval of the None baseline, two distinct categories are
visible:

High baseline performance datasets (e.g., TOEFL-QA and Coursera) achieved around
20% correct answers without any retrieval, indicating that these questions may already be well-
represented in the LLMs training data or represent question types that the model handles well
inherently. These datasets show limited benefit from retrieval augmentation, as the relative

improvement is constrained by the already substantial baseline.

Low baseline performance datasets (e.g., MultiFieldQA with 1.65% None baseline)
demonstrate strong dependence on retrieval, with search engines providing substantial perfor-
mance gains over the baseline. These represent scenarios where external knowledge is critical

for answering questions.

Of note here is that the dataset was originally filtered with GPT-40 but the experiment has
been run with the newer gpt-oss-120b. Both have different knowledge cutoff times, leading to

the conclusion that the latter model has more knowledge than GPT-4o.

TOEFL-QA achieved the highest performance with the Golden retriever at 88.89% correct
answers, though this must be interpreted in light of its already strong 19.60% None baseline.
Since the TOEFL-QA dataset tests for English understanding and text generation rather than
only QA performance [53], this indicates the strong results may be attributed to the advanced
linguistic abilities of the used gpt-o0ss-120b LLM. Current models demonstrate sufficient profi-
ciency in English understanding to already perform well on this benchmark without requiring

retrieval, which could explain the observed high performance in the experimental results.

BIn the experiment in this thesis, up to 10 documents were ultimatly returned

92

Discussion

MultiFieldQA demonstrates the best balance of high absolute performance (85.12% Golden,
73.55% best search engine) combined with low baseline performance (1.65%), indicating genuine

value added by retrieval.

Across datasets, Meilisearch and Typesense consistently appeared as top-performing search
engines, with keyword-based search generally outperforming other retrieval methods. The effec-
tiveness of different configurations varied by dataset, suggesting that optimal retrieval strategies

may be task dependent.

5.8 Potential for Hybrid Retrieval

The overlap analysis in Section 4.5 reveals that different search engine configurations retrieve
different documents correctly. The low average Jaccard index of 0.230 indicates that combining
engines could improve overall retrieval performance. This complementary behavior suggests
that full-text search and embedding-based retrieval may capture different aspects of relevance,

making hybrid approaches attractive.

The theoretical upper bound shows that combining all configurations could correctly retrieve
documents for 89.4% of questions, compared to 56.25% for the best single configuration. While
achieving this theoretical maximum is unrealistic in practice, even partial combinations show
substantial potential gains. The highest-benefit pairings (exceeding 70%) combine methods
from different retrieval paradigms, often embedding-based methods with full-text search. This
becomes very clear when examining the top 30 combinations as shown in Table 7, the list is

dominated by combinations which include embedding-based retrieval methods.

This pattern is explained by the fundamental difference in how these methods operate.
Embedding-based search matches documents based on semantic similarity in vector space,
capturing conceptual relationships even when exact keywords differ. Full-text search relies on
keyword matching and term frequency, excelling when queries and documents share vocabulary.
When one method fails to retrieve the correct document, the other may succeed because it

operates on different matching principles.

Importantly, the heatmap in Figure 9 shows that not all combinations are beneficial. Most
pairwise combinations provide limited improvement, with many cells near zero. Arbitrary
combination of search engines is unlikely to improve results; instead, combinations should be
chosen deliberately to leverage complementary strengths. Full-text search with chunk retrieval
shows uniformly low benefit regardless of the pairing, consistent with its poor individual

performance.

5.9 Assessment and Recommendations
The optimal choice between full-text and semantic search methods depends a lot on the
characteristics of both the document corpus and expected query patterns.

Clear performance advantages for full-text search were shown across most tested datasets,

with particularly strong results observed when query preprocessing steps were added. Compet-

93

Discussion

itive performance by semantic search using embeddings was exhibited only in specific contexts,
most notably in the TOEFL-QA dataset, where the advantage is explained by the requirement

for deeper semantic understanding of vague or ambiguous queries.

5.9.1 Trade-offs Between Accuracy and Efficiency

The results suggest a trade-off between retrieval quality and response time. Configurations
employing retrieval generally achieved higher accuracy but incurred increased latency in
the observed measurements. For MultiFieldQA, the observed 23-second increase in average
response time (from 9 to 32 seconds) when using retrieval with Meilisearch yielded substantial
accuracy improvements, suggesting that this trade-off may be worthwhile for accuracy-critical
applications. The appropriateness of this trade-off depends on the specific use case and latency

requirements.

5.9.2 Context-Dependent Recommendations

Based the results from the experiment, FTS should be used to implement search in a RAG
system when expected queries look for specific facts or concrete knowledge, and documents are
suitable for keyword-based full-text search. This is usually the case when searching for specific
keywords would yield relevant documents and consistent vocabulary is used in most of the

documents.

Because the semantic search alternative to full-text search approaches was outperformed most
of the time and with a wide margin across many different datasets, full-text search represents
a strong default choice for most practical applications of RAG, particularly those involving

factual queries and keyword-friendly document corpora.

On the other hand, embedding-based semantic search has advantages over full-text search
when queries are inherently vague or conceptual in nature. In these cases, semantic under-
standing beyond surface-level keyword matching is required by the documents. This becomes
even more visible when a mismatch between search queries and the document corpus is present

and context and meaning are more important than exact term matching.

This pattern is illustrated clearly by the TOEFL-QA results, as semantic understanding over

keyword matching is favored by the dataset’s characteristics.

In any case, an important finding is that incorporating a query preprocessing step, such
as keyword generation or query reformulation, significantly improves retrieval performance.
Even when searching in a full-text search index with the user query directly produces results
similar to embedding-based approaches, the addition of preprocessing creates measurably better

outcomes.

5.9.3 Dataset-Specific Considerations
Performance varies considerably across different dataset types, highlighting the importance of

evaluating retrieval methods against the documents and queries that are used.

54

Discussion

For the best results, practitioners should analyze the structure, vocabulary, and content
organization of their specific document collection, then consider how users typically formulate
questions and what information needs drive those queries and choose a search engine setup
based on that. Comparing this to the datasets tested in the experiment of this thesis helps

identify analogous scenarios.

Ideally, based on the assessment of queries and documents, a small evaluation dataset should
be curated to validate performance for the use case, effectively re-running the experiment of
this thesis on a smaller scale. The results of the experiment can then be used to compare
multiple different implementations against each other to make an informed decision about the

architecture required.

The NarrativeQA dataset presents an edge case worth noting. Its combination of large
document sizes and complex narrative structure poses challenges for both retrieval paradigms.
This requires alternative approaches beyond the straightforward architecture that was tested

in this thesis.

5.9.4 Limitations and Caveats
These recommendations apply within the scope and constraints of the presented experimental

design.

5.9.4.1 Single Model Dependency

Importantly, all experiments were conducted using a single LLM (gpt-oss-120b) for generation,
query preprocessing, keyword extraction, and answer evaluation. The relative performance of
full-text search versus embedding-based retrieval may differ with other model families (e.g.,
Claude, Llama, Gemini), smaller or larger models, or models with different training data and
capabilities. Similarly, only one embedding model (Qwen3-4B) was tested for semantic search;
other embedding models such as OpenAl’s text-embedding may yield different results. The
findings reported here are therefore specific to this model configuration and may not generalize

to all RAG implementations without further validation.

5.9.4.2 Evaluation Methodology
The same model (gpt-o0ss-120b) was used for both answer generation and automated evaluation,

which could theoretically introduce systematic bias. However, the evaluation was conducted
in a stateless manner: each answer was evaluated independently without the model having
access to or context of other generated answers. The model received only the question, the
correct reference answer, and the generated answer to evaluate, with no information about
which retrieval method produced the answer or how other answers were rated. This design
mitigates concerns about self-preferential rating, as the evaluation model cannot identify its

own outputs or adjust ratings based on retrieval method.

The 84.7% agreement rate with manual labels provides empirical validation that the auto-

mated evaluation produces reliable results despite using the same underlying model. Since the

95

Conclusion

stateless evaluation design excludes method-specific bias, actual measurement error is expected
to be random, which softens rather than inflates observed effect sizes. Nonetheless, using
separate model families for generation and evaluation in future work could provide additional
validation and reduce any potential for shared systematic blind spots in both generation and

evaluation.

5.10 Conclusion
While full-text search is strongly favored by the results in the majority of scenarios, the recurring
answer to “which method should be used?” remains: it depends. The dependence, however, is

systematic and predictable based on document corpus and query characteristics.

Within the scope examined here, the findings are sufficiently clear and interpretable to provide
actionable guidance for practitioners designing RAG systems with similar model configurations.
For most implementations, full-text search represents a robust default choice, with semantic
search reserved for scenarios where semantic understanding demonstrably outweighs the benefits
of keyword matching. Practitioners using different LLMs should validate these findings against

their specific model configuration before making architectural decisions.

6 Conclusion

This thesis investigated whether full-text search can serve as a viable alternative to embedding-
based retrieval in RAG systems. The motivation originated from the considerable infrastructure
complexity that embedding-based approaches introduce, including embedding model deploy-
ment, vector database management, and similarity search mechanisms. Full-text search, by
contrast, offers a more straightforward implementation path where databases handle indexing

automatically without requiring external embedding pipelines.

To address this research question, an experiment was conducted using a multi-source dataset
comprising 6,284 questions across eleven different QA benchmarks. The dataset was originally
filtered for different research on Long-Context RAG using GPT-40 to identify questions that
cannot be answered from world knowledge alone, ensuring that retrieval is genuinely required.
Four primary search backends were evaluated: SQLite Full-Text Search with BM25, pgVector
for embedding-based semantic search, and the specialized full-text search engines Typesense
and Meilisearch. Each search engine was tested with different retriever architectures including
direct passthrough, LLM-based query rewriting, keyword generation, and chunk-based retrieval.

The gpt-o0ss-120b model served as both the generation model and for query preprocessing tasks.

6.1 Key Findings
The experimental results demonstrate that, within the tested configuration using gpt-oss-120b
for generation and Qwen3-4B for embeddings, full-text search can not only match but outperform

embedding-based retrieval. Meilisearch with keyword generation and reranking achieved the

o6

Conclusion

highest overall correctness at 40.44%, compared to 31.19% for the best embedding-based

configuration (full-document retrieval with reranking).

Specialized full-text search databases consistently outperformed traditional BM25-based
implementations. Typesense and Meilisearch, which employ ranking algorithms beyond term
frequency metrics, both achieved 29.60% and 29.30% correctness with direct search compared
to 28.58% for embeddings (with full documents) and 25.27% for BM25-based SQLite Full-
Text Search. This suggests that modern search engine implementations provide meaningful

advantages for retrieval tasks, even when not further optimized.

Query preprocessing emerged as a critical factor for retrieval quality. Combining full-text

search with LLM-generated keywords significantly improved results across most configurations.

Embedding-based retrieval was also tested with equivalent keyword preprocessing but did not
benefit from it. Keyword-based embedding search achieved only 7.15% correctness compared
to 24.59% for direct chunk retrieval. This asymmetry indicates that the advantage of full-text
search with preprocessing stems from the fundamental suitability of keyword-based search to
leverage LLM-generated terms, rather than from an unfair comparison where only one method

received preprocessing.

Reranking with Jina Reranker v3, a state-of-the-art model on the BEIR benchmark, provided
only marginal improvements and in some cases degraded performance. For Meilisearch with
keyword search, reranking improved correctness by 1.26%. In certain dataset configurations,
such as MultiFieldQA, reranking actually decreased performance by 7.43%. Since these results
were obtained with a current best-in-class reranking model, they suggest that modern search
engines may already provide sufficiently effective ranking, limiting the potential gains from

additional reranking steps.

Performance varied considerably across datasets. MultiFieldQA achieved 73.55% correctness
with the best configuration, while NarrativeQA reached only 18.41%. The TOEFL-QA dataset
represented the sole exception where embeddings outperformed full-text search (65.00% vs.
46.62%), likely due to the semantic nature of language comprehension questions. These varia-
tions underscore that optimal retrieval strategies depend on dataset characteristics including

document structure, query patterns, and the type of reasoning required.

Chunk-based retrieval with full-text search performed poorly, often falling below the no
retrieval baseline. This indicates that incorrect chunking strategies can actively mislead the

language model, resulting in worse performance than providing no retrieved context at all.

6.2 Future Work

The overlap analysis in Section 4.5 demonstrates substantial potential for hybrid retrieval
approaches. The highest-benefit pairings combine methods from different retrieval paradigms,
particularly embedding-based search with full-text search. This suggests that embedding-

based semantic matching and keyword-based full-text search capture complementary aspects

o7

Conclusion

of relevance. Future work could investigate practical hybrid retrieval strategies that leverage

these complementary strengths without requiring exhaustive combination of all configurations.

Reranking did not yield the expected performance improvement, despite using Jina Reranker
v3, a state-of-the-art model. While this suggests the limitation lies in the fundamental
interaction between modern search engine ranking and reranking rather than model choice,
a systematic evaluation across multiple reranking models could confirm whether alternative
approaches might be more effective for specific dataset characteristics or search engine configu-
rations. Additionally, analyzing whether gold documents are demoted by reranking could explain

the observed performance degradation in certain configurations.

The chunk sizes used in this experiment (max. 512 characters with 50 character overlap)
proved too small for effective full-text search. Future work could systematically test larger chunk
sizes (e.g., 2000-4000 characters) to identify whether a threshold exists where full-text search
on chunks becomes competitive with full-document retrieval. Such investigation could clarify
whether the observed chunk-based failure is specific to the chunk sizes tested or represents a
broader limitation, which could impact the relative performance comparison between retrieval

methods.

Ablating the inclusion of relevance scores in the generator prompt could quantify whether

heterogeneous scoring across search engines influences outcomes.

A further direction for future work is validating these findings across different model families.
This thesis used gpt-oss-120b exclusively for generation, query preprocessing, and evaluation.
Testing with other LLM families such as Claude, Llama, or Gemini would establish whether the
observed advantages of full-text search generalize beyond this specific model or are particular to
its characteristics. Similarly, evaluating alternative embedding models beyond Qwen3-4B could
reveal whether the performance gap between full-text search and semantic search varies with
embedding quality. Using different models for generation versus evaluation could also provide

additional validation of the automated evaluation methodology.

o8

Appendix

A Appendix

A.1 Answer Prompt

The prompt used by the experiment implementation to answer questions:

Use the following information to assist the user:

You are an AI assistant that helps people find information. Only use the information
given to you.

Focus on directly providing the answer to the question. You don't need to explain
your answer at length, a very short explanation is sufficient.

Do not make up an answer.

If you do not know the answer to a question, respond by saying verbatim "I do not
know the answer to your question."

{results_str} is replaced with a concatenated string of the results with the text and score and

separated by ---. A result string can look like this (texts are shortened for brevity):

score: 0.88323

text: Alexander M. Patch American High School (also known as "Patch American High
School" or "Patch High School") was an English language high school on Patch Barracks
in Stuttgart,

score: 0.87303

text: List of NFL franchise post-season droughts Playoff Droughts OTeam@® Last earned
appearance in post-season Seasons Buffalo Bills ~ 1999 AFC Wild Card Playoffs 17
Cleveland Browns ~ 2002 AFC Wild Card Playoffs 14 Los Angeles Rams ~ 2004 NFC

Divisional ...

score: 0.6323
text: Houston Astros The Astros clinched their first division title as a member of
the American League West division, and first division title overall since 2001.

score: 0.559

text: Henry IV (11 November 1050 — 7 August 1106) was Holy Roman Emperor from 1084 to
1105, king of Germany from 1054 to 1105, king of Italy and Burgundy from 1056 to
1105, and duke of Bavaria from 1052 to 1054.

A.2 Query rewriting prompts
Both the Search Query and Keyword prompts are divided into a System prompt and user

message. They are implemented using the dspy Python library to simplify the implementation.

In both cases, the {user query} placeholder is replaced at runtime with the input query.

Appendix

A.2.1 Search Query Prompt
The prompt that is used to rewrite the user query into a more suitable search query.
The system prompt looks like this:
Your input fields are:
1. “query’ (str):
Your output fields are:
1. “output query’ (str):
All interactions will be structured in the following way, with the appropriate values
filled in.

[[## query ## 1]
{query}

[[## output query ##]]
{output_query}

[[## completed ## 1]
In adhering to this structure, your objective is:

Return a query for searching documents in a database that might contain the
answer to the query.

The user message looks like this:

[[## query ## 1]
{user_query}

Respond with the corresponding output fields, starting with the field " [[##
output_query ## 1]°, and then ending with the marker for "[[## completed ## 1] .
As an example, for a user query of Do both films Lifeforce (film) and Via Pony Express

have the directors that share the same nationality? the response might look like this:

[[## output_query ##]]
"Lifeforce (film) director nationality" OR "Via Pony Express director nationality"

[[## completed ## 1]

A.2.2 Keyword Prompt

The Keyword prompt is used to create keywords for search based on the user query.
The system prompt looks like this:

Your input fields are:

1. “query’ (str):

Your output fields are:

1. "keywords™ (list[str]):

All interactions will be structured in the following way, with the appropriate values
filled in.

[[## query ## 1]

II

Appendix

{query}

[[## keywords ## 1]
{keywords} # note: the value you produce must adhere to the JSON schema:
{"type": "array", "items": {"type": "string"}}

[[## completed ## 1]
In adhering to this structure, your objective is:

Return a list of keywords for searching documents in a database that might
contain the answer to the query.

The user message looks like this:

[[## query ## 1]
{user_query}

Respond with the corresponding output fields, starting with the field “[[## keywords
]11° (must be formatted as a valid Python list[str]), and then ending with the
marker for “[[## completed ## 1] .

As an example, for a user query of Do both films Lifeforce (film) and Via Pony Express
have the directors that share the same nationality? the response might look like this:

[[## keywords ## 1]

["Lifeforce film director", "Via Pony Express director", "director nationality",
"Lifeforce director nationality", "Via Pony Express director nationality", "film
directors nationality comparison", "British director Lifeforce", "American director
Via Pony Express", "film director nationality Lifeforce", "film director nationality

Via Pony Express"]
[[## completed ## 1]

A.3 Evaluation Prompt
This is the prompt that’s produced after optimizing it with dspy as outlined in Section 3.5. It

is divided into a System prompt and User message.
The System prompt:

Your input fields are:

1. “question® (str):

2. “correct _answer® (str):

3. “provided answer® (str):

Your output fields are:

1. “correctness’ (Literal['correct', 'partially correct', 'incorrect']): ${reasoning}
All interactions will be structured in the following way, with the appropriate values
filled in.

[[## question ## 1]
{question}

[[## correct_answer ##]]

II1

Appendix

{correct_answer}

[[## provided answer ##]]
{provided answer}

[[## correctness ## 11
{correctness} # note: the value you produce must exactly match (no extra
characters) one of: correct; partially correct; incorrect

[[## completed ## 11
In adhering to this structure, your objective is:
Given the fields “question’, “correct answer’, “provided answer’, produce the

fields “correctness’.
The User message:

[[## question ## 1]
{question}

[[## correct_answer ##]]
{correct _answer}

[[## provided answer ##]]
{provided answer}

The placeholders {question}, {correct answer} and {provided answer} are replaced with

appropriate values at runtime.
A potential user message and response might look like this:

[[## question ## 1]
What may happen if the VR headset lenses are exposed to sunlight or strong light?

[[## correct_answer ## 1]

Exposure to sunlight or strong light may cause permanent yellow spot damage on the
screen.

[[## provided answer ##]]

Exposure to direct sunlight or strong light may cause permanent yellow spot damage on
the screen. Such screen damage is not covered by the warranty.

Assistant message:

[[## correctness ## 1]

correct

[[## completed ## 1]

v

Appendix

A.4 Search Engine Results by Dataset

Column abbreviations:

e Eng. (Engine): Emb = Embeddings, FTS = Full-Text Search, Meili = Meilisearch, Type =
Typesense, Gold = Golden, None = No retrieval

e Ret. (Retriever): P = Passthrough, C = Chunk, K = Keyword, S = Search, F = Full Docs

* RR (Reranked): Y = Yes, N = No

¢ Retr., Compl., Resp.: Average retrieval, completion, and response times in seconds

X X x @) 53 3 X @)
Gold N | 73.8% | 1.9% | 75.7% 0.01 1.8 1.8 Gold N | 37.0% | 42.6% | 79.6% 0.00 1.6 1.6
None N 8.7% | 0.6% 9.4% 0.00 0.9 0.9 None N | 20.4% | 46.3% | 66.7% 0.00 1.2 1.2
Emb N 8.4% | 0.7% 9.1% 0.23 1.1 14 Emb N | 24.1% | 44.4% | 68.5% 0.29 1.1 1.4
Y 7.0% | 0.9% 7.9% 0.36 1.5 1.9 Y | 24.1% | 35.2% | 59.3% 0.35 1.7 2.1
F | N|194% | 1.4% | 20.8% 0.58 8.1 8.7 F M38.9% 74.1% 0.44 8.3 8.8
Y | 18.8% | 0.9% | 19.6% | 35.68 7.3 | 43.0 Y | 25.9% | 42.6% | 68.5% | 18.51 7.2 | 25.7
K| N 4.5% | 0.7% 5.2% 1.12 1.0 2.1 K| N 7.4% | 44.4% | 51.9% 1.64 1.3 2.9
Y 3.9% | 0.8% 4.6% 1.71 1.2 2.9 W 35.2% | 40.7% 2.25 14 3.7
S| N 7.0% | 0.4% 7.4% 0.24 1.0 1.3 S | N |204% | 46.3% | 66.7% 0.27 14 1.6
Y 4.5% | 0.2% 4.8% 0.34 1.0 1.3 Y | 18.5% | 37.0% | 55.6% 0.35 1.2 1.6
FIS | C | N 9.9% | 0.6% | 10.5% 0.00 0.9 0.9 FTS | C | N | 20.4% | 40.7% | 61.1% 0.01 1.2 1.2
Y 9.8% | 0.8% | 10.5% 0.34 1.3 1.6 Y | 22.2% | 42.6% | 64.8% 0.01 1.7 1.7
K | N | 19.6% | 0.6% | 20.2% 2.35 | 10.0 | 124 K | N |204% | 50.0% | 70.4% 1.38 6.8 8.2
Y | 18.8% | 1.0% | 19.8% 6.25 | 12.0 | 18.3 Y | 22.2% | 44.4% | 66.7% 6.50 | 10.5 | 16.9
P |N|358% | 1.1% | 36.9% 0.14 4.3 4.5 P | N |25.9% | 42.6% | 68.5% 0.01 1.2 1.3
Y | 40.9% | 0.6% | 41.5% 2.18 5.1 7.2 Y | 22.2% | 48.1% | 70.4% 0.05 14 1.5
S |N|37.0% | 0.6% | 37.7% 1.69 5.0 6.7 S | N | 22.2% | 42.6% | 64.8% 1.30 14 2.7
Y | 40.8% | 0.9% | 41.6% 3.34 5.0 8.4 Y | 16.7% | 42.6% | 59.3% 1.04 1.6 2.6
Meili | C MO.I% 0.4% 0.01 1.1 1.1 Meili | C | N | 11.1% | 31.5% | 42.6% 0.01 1.1 1.1
Y 0.6% | 0.0% 0.6% 0.11 1.8 1.9 Y | 74% | 31.5% | 38.9% 0.11 1.8 1.9
K| N|56.0% | 1.6% | 57.6% 0.26 | 10.7 | 11.0 K| N |31.5% | 46.3% | 77.8% 0.28 8.2 8.5
Y | 55.0% | 1.2% | 56.2% 4.41 | 34.6 | 39.1 Y | 33.3% | 42.6% | 75.9% 4.03 | 23.7 | 27.7
P | N |433% | 1.2% | 44.5% 0.13 | 11.6 | 11.7 P | N |13.0% | 50.0% | 63.0% 0.24 9.1 9.3
Y | 41.8% | 1.2% | 43.0% 3.60 | 11.6 | 15.2 Y | 18.5% | 46.3% | 64.8% 4.35 9.2 | 13.6
S | N | 585% | 1.1% | 59.6% 0.10 8.6 8.7 S | N |204% | 51.9% | 72.2% 0.18 7.4 7.6
Y | 58.9% | 1.2% | 60.1% 2.51 8.7 | 11.3 Y | 22.2% | 48.1% | 70.4% 2.73 6.9 9.6
Type | C | N 0.5% | 0.0% 0.5% 0.22 1.0 1.2 Type | C | N 7.4% | 29.6% | 37.0% 0.41 1.1 1.5
Y 0.2% | 0.0% 0.2% 0.53 1.4 1.9 Y 13.0% | 18.5% 0.82 1.3 2.2
K M 1.5% | 64.1% 0.84 8.8 9.6 K| N 481% | 72.2% 0.80 7.8 8.6
Y
N
Y
N
Y

Y | 57.1% | 1.1% | 58.2% 6.40 | 28.6 | 35.0 42.6% | 77.8% 6.15 | 22.3 | 28.5
P | N |45.6% | 0.9% | 46.5% 0.36 4.4 4.8 P 18.5% | 46.3% | 64.8% 1.12 3.5 4.6
Y | 44.6% | 1.0% | 45.6% 3.42 4.4 7.9 16.7% | 38.9% | 55.6% 5.23 3.6 8.8
S |N|57.9% | 1.0% | 58.9% 0.22 4.3 4.6 S 22.2% | 40.7% | 63.0% 0.37 2.0 2.4
Y | 56.2% | 1.2% | 57.5% 1.74 4.2 5.9 24.1% | 29.6% | 53.7% 1.44 2.4 3.8
Table 8: 2WikiMultihopQA Table 9: Coursera

Appendix

N X e @) I X e &)
Gold N | 85.4% | 1.4% | 86.7% 0.01 2.0 2.0 Gold 53.8% | 13.9% | 67.7% 0.00 1.5 1.5
None N 9.8% | 0.9% | 10.7% 0.00 1.3 1.3 None 1.9% 1.9% 3.8% 0.00 0.9 0.9
Emb N | 21.8% | 0.1% | 21.9% 0.24 14 1.6 Emb 12.7% 8.2% | 20.9% 0.23 1.2 1.5
Y | 20.8% | 0.4% | 21.1% 0.36 1.9 2.2 12.0% 6.3% | 18.4% 0.34 1.5 1.9
F | N| 31.9% | 0.9% | 32.8% 0.49 | 12.3 | 12.8 F 10.8% 5.1% | 15.8% 0.50 4.8 5.3
Y | 304% | 0.8% | 31.1% | 24.75 | 10.8 | 35.6 17.1% 5.7% | 22.8% | 31.44 4.0 | 354
K| N 3.0% | 0.7% 3.7% 1.28 1.2 2.4 K 7.0% 7.6% | 14.6% 1.70 1.1 2.8
W 0.6% 2.2% 1.89 1.4 3.3 4.4% 3.8% 8.2% 2.53 1.2 3.7
S 12.0% | 0.2% | 12.3% 0.24 1.2 1.5 S 11.4% 7.0% | 18.4% 0.24 1.1 1.4
11.0% | 0.9% | 11.9% 0.33 1.3 1.7 11.4% 8.9% | 20.3% 0.31 1.1 1.4
FTS C 7.4% | 0.7% 8.2% 0.00 1.3 1.3 FTS C 5.1% 3.8% 8.9% 0.01 0.9 0.9
8.9% | 0.4% 9.2% 0.01 1.8 1.8 5.1% 2.5% 7.6% 0.03 1.2 1.3
K 18.3% | 1.4% | 19.7% 290 | 11.8 | 14.7 K 10.8% 3.8% | 14.6% 1.50 5.8 7.3

16.9% | 0.6% | 17.5% | 6.42 | 13.0 | 19.4 9.5% | 5.1% | 14.6% | 10.74 | 7.1 | 17.9

P 50.6% | 1.4% | 51.9% | 0.05 | 4.8 | 4.9 P 7.0% | 7.6% | 14.6% | 038 | 32| 3.6
51.5% | 1.1% | 52.6% | 1.19 | 53| 6.5 10.1% | 6.3% | 16.5% | 5.20 | 3.6 | 88
S 47.8% | 1.0% | 488% | 1.72 | 49| 6.6 S 57% | 2.5% | 82% | 1.03| 23| 33

48.8% | 0.4% | 49.1% | 294 | 49| 7.9 11.4% | 63% |17.7% | 3.71 | 27| 64

44% | 1.9% | 6.3% | 0.01 1.0 | 1.0
57% | 25% | 82% | 0.10| 1.5 | 1.6

Meili | C 11.4% | 0.2% | 11.6% | 0.01 1.3 1.3 Meili | C

11.1% | 0.8% | 11.9% | 0.10 | 2.0 | 2.1

<lZ|x|Z2|I<|Z2|<|Z|x|Z|<K|Z2|<x|Z2|x|Z2|<|2Z2|<|Z2|2|Z

47.6% | 1.2% | 48.8% | 0.24 | 124 | 12.6 K 34.8% | 14.6% | 49.4% | 030 | 82| 8.5
474% | 2.0% | 49.4% | 3.90 | 43.2 | 47.1 W 12.7% | 50.6% | 3.81 | 24.7 | 28.5
P 44.9% | 1.4% | 46.2% | 0.13 | 11.6 | 11.7 P 11.4% | 3.8% | 15.2% | 028 | 6.3 | 6.6
45.2% | 1.8% | 47.0% | 3.54 | 11.6 | 15.2 12.0% | 3.8% | 15.8% | 6.67 | 6.5 | 13.1
S 50.8% | 1.5% | 52.3% | 0.09 | 9.2 | 9.3 S 17.7% | 10.8% | 28.5% | 0.16 | 74 | 7.6

571% | 1.4% | 58.5% | 2.38 | 9.4 | 11.8 22.2% | 12.7% | 34.8% | 3.58 | 7.5 | 11.1

Z|<|lz|<|=Z

Type | C 9.2% | 0.7% | 9.9% | 022 10| 1.3 Type | C 1.9% | 57% | 023] 09| 1.2

;

=
Zl<|lzI<x|Z2|x|lZ2|<]|Z2|<x|Z2|x]|2|<K|Z2|<K|Z2|x|2|<|2Z2|<|Z2|<]|Z2

8.9% | 0.1% 9.0% 0.53 14 1.9 Y | 5.7% 1.3% 7.0% 0.51 1.2 1.7

K 50.6% | 0.5% | 51.1% 0.85 | 10.8 | 11.7 K| N |329% 9.5% | 42.4% 2.50 6.1 8.6

42.0% | 1.5% | 43.5% 5.66 | 41.4 | 47.0 Y | 335% | 12.7% | 46.2% | 10.52 | 16.6 | 27.2

P 60.5% | 1.9% | 62.3% 0.33 4.8 5.1 P | N |[10.8% 5.7% | 16.5% 0.90 2.6 3.6

62.4% | 0.9% | 63.2% 2.09 4.8 6.9 Y | 17.1% 51% | 22.2% 8.90 3.2 | 12.1

S 62.8% | 0.9% | 63.7% 0.12 4.2 4.3 S | N |14.6% | 9.5% | 24.1% 0.53 2.8 3.3

w 1.5% | 66.0% 1.16 4.3 5.5 Y | 14.6% | 10.8% | 25.3% 4.34 3.0 7.3
Table 10: HotpotQA Table 11: MultiDoc2Dial

VI

Appendix

X N e O R 2N X o)
Gold N | 85.1% | 9.1% | 94.2% 0.01 1.6 1.6 Gold N | 58.1% | 2.1% | 60.2% 0.01 2.7 2.7
None N 1.7% | 0.0% 1.7% 0.00 0.7 0.7 None N 8.4% | 1.2% 9.6% 0.00 14 14
Emb N | 33.9% | 41% | 38.0% 0.24 1.0 1.3 Emb N | 21.1% | 1.2% | 22.3% 0.22 1.7 1.9
Y | 33.9% | 5.8% | 39.7% 0.40 14 1.8 Y | 21.2% | 1.1% | 22.4% 0.35 2.3 2.6
F|N|347% | 1.7% | 36.4% 0.41 8.5 8.9 F|N| 344% | 2.0% | 36.4% 0.51 | 15.2 | 15.7
Y | 35.5% | 1.7% | 37.2% | 22.40 6.8 | 29.2 Y | 34.6% | 2.1% | 36.8% | 25.01 | 13.5 | 38.5
K|N 41% | 5.8% 9.9% 1.61 0.9 2.5 K| N 6.9% | 1.6% 8.5% 1.46 1.4 2.8
Y 1.7% | 5.0% 6.6% 2.66 1.0 3.7 Y 5.4% | 1.6% 7.0% 2.52 1.6 4.2
S |N| 149% | 1.7% | 16.5% 0.24 0.9 1.2 S | N | 185% | 1.0% | 19.5% 0.23 1.5 1.7
Y | 14.9% | 3.3% | 182% | 0.33 | 0.9 1.3 Y | 16.6% | 1.4% | 18.0% 0.32 1.5 1.8
FTS | C | N 0.0% 0.8% 0.01 0.8 0.8 FTS | C | N 7.0% | 1.6% 8.6% 0.00 14 14
Y 0.0% 0.8% 0.01 1.0 1.0 Y 7.9% | 1.4% 9.2% 0.01 1.9 1.9
K| N|182% | 25% | 20.7% 1.61 6.9 8.5 K|N|197% | 2.3% | 22.1% 3.10 | 12.2 | 15.3
Y | 19.0% | 3.3% | 22.3% 6.64 9.6 | 16.2 Y | 22.4% | 2.9% | 25.2% 6.72 | 13.2 | 19.9
P |N|264% | 2.5% | 28.9% 0.09 4.0 4.1 P |N|24.8% | 2.3% | 27.1% 0.05 4.0 4.0
Y | 30.6% | 1.7% | 32.2% 1.90 4.5 6.4 Y | 28.4% | 2.0% | 30.4% 1.23 4.7 5.9
S | N | 24.0% | 0.8% | 24.8% 0.93 3.5 4.4 S |N|293% | 1.8% | 31.2% 2.31 6.7 9.0
Y | 31.4% | 2.5% | 33.9% 2.14 3.8 6.0 Y | 32.5% | 1.9% | 34.4% 3.87 6.4 | 10.3
Meili | C | N 1.7% | 0.8% 2.5% 0.01 1.0 1.0 Meili | C | N 4.1% | 0.1% 4.2% 0.01 1.3 1.3
Y 1.7% | 0.8% 2.5% 0.11 1.5 1.6 Y 3.6% | 0.5% 4.1% 0.10 2.3 2.4
K M 5.0% | 78.5% 0.25 9.4 9.6 K| N|345% | 32% | 37.7% 0.25 | 14.0 | 14.2
Y | 66.1% | 7.4% | 73.6% 3.43 | 28.6 | 32.0 Y | 37.4% | 3.5% | 40.9% 4.78 | 34.0 | 38.7
P | N|355% | 3.3% | 38.8% 0.21 9.6 9.8 P |N|31.4% | 2.8% | 34.3% 0.17 | 12.2 | 12.3
Y | 38.8% | 2.5% | 41.3% 4.47 9.9 | 14.3 Y | 32.9% | 2.9% | 35.8% 4.16 | 12,5 | 16.7
S | N|521% | 5.0% | 57.0% 0.12 7.2 7.3 S | N|36.3% | 3.2% | 39.5% 0.12 | 11.6 | 11.7
Y | 51.2% | 5.0% | 56.2% 2.53 7.5 | 10.1 Y B 1.6% | 42.1% 2.71 | 11.6 | 14.3
Type | C | N 0.0% 0.8% 0.12 0.8 1.0 Type | C | N I/ 0.2% 2.0% 0.31 1.1 1.5
Y 0.8% 1.7% 0.30 1.2 1.5 Y 1.8% | 0.1% 1.9% 0.70 1.5 2.2
K| N |545% | 25% | 57.0% 1.20 7.5 8.7 K| N|369% | 25% | 39.3% 1.00 | 12.8 | 13.8
Y | 55.4% | 5.8% | 61.2% 6.45 | 25.2 | 31.7 Y | 37.1% | 2.9% | 40.0% 5.69 | 47.2 | 52.9
P |N|281% | 4.1% | 32.2% 0.63 4.2 4.8 P |N|337% | 25% | 36.1% 0.68 5.2 5.9
Y | 32.2% | 2.5% | 34.7% 4.49 4.4 8.8 Y | 34.8% | 2.2% | 37.0% 3.51 5.4 8.9
S |N|471% | 5.0% | 52.1% | 029 | 3.3 | 3.6 S | N | 383% | 2.1% | 40.4% 0.22 | 6.8 7.0
Y | 47.9% | 41% | 52.1% 2.17 3.7 5.9 Y | 40.0% | 1.8% | 41.8% 2.10 7.1 9.2
Table 12: MultiFieldQA Table 13: MuSiQue

VII

Appendix

X N e O R 2N X)

Gold N | 43.2% | 5.3% | 48.6% 0.03 2.4 2.4 Gold N | 66.4% | 4.0% | 70.4% 0.01 1.8 1.8
None N 1.4% | 0.0% 1.4% 0.00 0.8 0.8 None N | 13.7% | 3.7% | 17.4% 0.00 1.0 1.0
Emb N 7.5% | 2.3% 9.9% 0.23 1.1 1.3 Emb N | 31.9% | 6.3% | 38.2% 0.21 1.2 14
Y 71% | 1.8% 8.9% 0.30 1.5 1.8 Y | 31.9% | 5.4% | 37.3% 0.30 1.6 1.9

F|N 9.8% | 1.1% | 10.9% 0.50 7.5 8.0 F|N|47.6% | 5.4% | 53.0% 0.30 | 13.5 | 13.8

Y | 13.8% | 1.1% | 14.9% | 38.11 6.5 | 44.6 Y | 48.1% | 5.7% | 53.8% | 10.09 | 12.0 | 22.1

K| N 1.6% | 1.2% 2.8% 1.35 0.9 2.3 K| N 57% | 3.1% 8.8% 1.34 0.9 2.2

H BEIEIEIEIE Y | 74% | 2.8% | 103% | 260 | 11| 37

S |N 3.0% | 1.1% 4.1% 0.23 1.0 1.2 S |N|27.9% | 3.1% | 31.1% 0.24 1.1 1.3

Y 2.8% | 1.2% 4.0% 0.46 1.0 1.4 Y | 24.5% | 4.0% | 28.5% 0.32 1.1 14

FTS | C | N 1.6% | 0.5% 2.1% 0.00 0.8 0.8 FTS | C | N | 11.7% | 2.3% | 14.0% 0.00 1.0 1.0
Y 1.5% | 0.0% 1.5% 0.01 1.0 1.0 Y | 12.3% | 2.8% | 15.1% 0.01 1.3 1.3

K| N 1.7% | 0.2% 2.0% 1.65 8.1 9.8 K| N|174% | 3.4% | 20.8% 1.65 9.1 | 10.8

Y 41% | 0.5% 4.6% 6.45 9.1 | 15.6 Y | 18.8% | 3.7% | 22.5% 543 | 11.7 | 17.1

P | N 6.7% | 0.9% 7.6% 0.16 4.3 4.5 P | N|285% | 3.7% | 32.2% 0.12 8.1 8.2

Y | 129% | 2.2% | 15.1% 3.39 6.0 9.4 Y | 38.5% | 51% | 43.6% 3.35 9.1 | 12.5

S| N 4.8% | 0.9% 5.7% 1.22 3.5 4.7 S | N |282% | 3.7% | 31.9% 1.04 6.0 7.0

Y 8.6% | 1.8% | 10.4% 4.29 4.4 8.7 Y | 31.3% | 2.8% | 34.2% 3.64 7.2 | 10.9

Meili | C | N 2.8% | 0.2% 3.1% 0.01 1.0 1.0 Meili | C | N 4.8% | 1.1% 6.0% 0.01 0.9 0.9
Y 2.6% | 0.2% 2.9% 0.10 1.7 1.8 Y 5.4% | 1.7% 71% 0.11 1.5 1.6
K|N|172% | 3.5% | 20.7% 0.35 9.2 9.5 K| N|49.0% | 6.3% | 55.3% 0.28 8.3 8.6

Y | 17.8% | 2.6% | 20.4% 4.85 | 17.2 | 22.1 W 5.7% | 57.5% 3.92 | 13.7 | 17.6

P M 2.1% | 20.5% 0.23 8.5 8.7 P | N|353% | 4.3% | 39.6% 0.17 | 10.5 | 10.7

Y | 17.8% | 3.8% | 21.5% 5.94 9.5 | 154 Y | 37.6% | 5.7% | 43.3% 4.37 | 11.2 | 15.6

S |N| 14.8% | 2.1% | 16.9% 0.16 7.6 7.8 S | N | 41.6% | 4.8% | 46.4% 0.15 9.9 | 10.1

Y | 16.8% | 1.9% | 18.6% 3.77 8.6 | 124 Y | 44.7% | 4.3% | 49.0% 3.50 | 10.5 | 14.0

Type | C | N| 1.8% | 0.0% | 1.8% | 008 | 09| 1.0 Type | C Mo.ﬁ% 34% | 011| 08| 0.9
Y 2.0% | 0.0% 2.0% 0.24 1.3 1.6 Y 3.7% | 0.3% 4.0% 0.30 1.1 14

K |N|127% | 2.0% | 14.7% 1.49 7.2 8.7 K | N | 41.0% | 5.7% | 46.7% 1.04 8.5 9.5

Y | 14.8% | 2.6% | 17.4% 9.39 | 25.3 | 34.7 Y | 47.9% | 5.4% | 53.3% 6.57 | 33.4 | 40.0

P |N|153% | 24% | 17.7% 0.58 4.9 5.5 P |N|359% | 3.7% | 39.6% 0.41 7.8 8.2

Y | 16.4% | 2.5% | 18.9% 6.93 5.3 | 12.3 Y | 35.6% | 4.6% | 40.2% 5.93 84 | 14.3

S |N| 144% | 1.7% | 16.2% 0.43 4.0 4.5 S | N | 35.6% | 4.8% | 40.5% 0.29 6.2 6.5

Y | 13.4% | 1.5% | 14.9% 4.51 4.8 9.3 Y | 34.5% | 4.3% | 38.7% 3.24 6.8 | 10.0

Table 14: NarrativeQA Table 15: Naturalquestion

VIII

Appendix

X =X e O X| X X O

Gold N | 68.9% | 15.9% |84.8% | 0.00 | 1.6 | 1.6 Gold N | 71.8% | 0.7% | 72.5% | 0.01 1.6 | 1.6
None N| 02% | 01% | 04% | 000 | 0.7 | 0.7 None N | 43% | 00% | 43% | 000| 08| 0.8
Emb N | 17.3% | 9.1% | 26.5% | 0.21 1.2 | 14 Emb N | 31.1% | 0.1% | 31.2% | 023 | 1.2| 1.4
Y | 17.6% | 9.1% |26.8% | 033 | 1.6 | 1.9 Y | 29.6% | 0.5% | 30.1% | 030 | 1.7 | 2.0
F|N|[212% | 71% |28.4% | 0.40 | 10.1 | 10.5 F |N|236%|01% | 238% | 057 | 62| 6.8

Y | 22.0% | 9.0% | 31.0% | 13.48 | 8.7 | 22.2 Y | 289% | 0.2% | 29.1% | 32.06 | 5.8 | 37.8

K|N| 57% | 38% | 95% | 1.60 | 1.0 | 26 K| N|147% | 01% | 14.8% 1.61 1.0 | 2.6

Y| 55% | 32% | 88% | 291 1.2 | 4.1 Y | 151% | 01% | 152% | 270 | 12| 3.9

S| N|[132% | 6.7% |199% | 022 | 1.0 | 12 S|N|176% | 01% | 17.8% | 026 | 12| 1.5

Y [128% | 6.1% | 18.9% | 0.32| 1.1 14 Y | 16.5% | 0.1% | 16.6% | 033 | 1.0 | 14

FTS | C| N | 21% | 05% | 26% | 001 | 08| 0.8 FTS | C | N | 49% | 0.0% | 49% | 0.01| 08| 0.8
W 0.8% | 2.6% | 0.02| 1.1 1.1 Y| 59% | 01% | 6.0% | 0.01 1.1 1.1
K|N|[10.7% | 54% [16.1% | 129 | 7.7 | 9.0 K |N|11.0% | 0.5% | 11.5% | 1.59 | 6.0 | 7.6

Y [13.9% | 6.1% | 20.0% | 6.27 | 13.4 | 19.6 Y | 142% | 0.6% | 14.9% | 832 | 22.1 | 30.4

P | N |146% | 56% |202% | 0.10 | 63| 6.4 P|N| 56%|00% | 56% | 002| 09/ 09

Y | 15.6% | 6.0% | 21.6% | 240 | 6.9 | 9.3 Y| 68%|02% | 7.0% | 030 | 11 1.4

S| N |[133% | 63% |19.6% | 098 | 51| 6.1 S|N| 78% | 01% | 80% | 115 | 12| 23

Y [128% | 6.1% | 189% | 290 | 54 | 83 Y | 80%|00% | 80% | 203 | 14| 34

Meili | C | N | 6.6% | 4.1% | 10.7% | 0.01 | 1.4 | 14 Meili | C | N | 39% | 04% | 43% | 0.01| 09| 09
Y| 68% | 44% |11.1% | 0.09 | 21 | 22 Y| 51% | 00% | 51% | 010 | 14| 15

K | N|25.9% | 10.0% | 35.9% | 0.16 | 7.5 | 7.6 K | N|402% | 04% | 40.6% | 0.38 | 9.1 | 9.5
w 10.2% | 36.9% | 293 | 84 | 114 w 0.1% | 44.5% | 4.10 | 11.5 | 15.6

P | N |[19.0% | 7.4% |26.5% | 0.12 | 10.3 | 10.4 P|N|287% | 04% | 29.0% | 025 | 73| 75

Y | 20.5% | 8.2% |28.7% | 3.48 | 104 | 13.9 Y | 285% | 0.1% | 28.6% | 6.08 | 7.5 | 13.5

S| N |188% | 88% |276% | 007 | 73| 74 S | N|303% | 04% | 30.6% | 0.12 | 58| 6.0

Y | 189% | 7.2% |26.1% | 213 | 71| 9.3 Y | 33.6% | 0.5% | 34.1% | 3.33| 6.3 | 9.6

Type | C | N | 61% | 24% | 85% | 0.07| 1.1 | 1.2 Type | C Mo.o% 3.6% | 028| 08| 1.1
Y| 65% | 28% | 92% | 022| 15| 1.7 Y | 42% | 01% | 44% | 064 | 12| 1.8

K| N|[23.0% | 87% |31.7% | 046 | 7.8 | 83 K |N|322% | 05% | 32.7% | 1.84 | 6.5 | 8.3

Y [24.8% | 7.5% | 32.2% | 3.78 | 20.9 | 24.7 Y | 33.1% | 0.4% | 33.5% | 9.99 | 20.5 | 30.5

P |N|168% | 7.2% |24.0% | 028 | 6.8 | 7.1 P|N|168% | 02% | 17.0% | 143 | 26 | 4.0

Y | 185% | 7.0% | 25.5% | 3.90 | 7.0 | 10.9 Y | 17.9% | 0.2% | 181% | 7.29 | 2.8 | 10.0

S| N |[198% | 74% |272% | 0.16 | 46 | 4.8 S| N |244% | 0.5% | 24.9% | 041 | 24| 238

Y | 17.8% | 7.0% | 24.8% | 1.80 | 4.7 | 6.5 Y | 231% | 0.4% | 23.5% | 325 | 26| 5.9

Table 16: QASPER Table 17: QUALTY

IX

X 2N e)

Gold N | 88.9% | 7.2% | 96.1% 0.00 1.1 1.1
None N | 19.6% | 3.1% | 22.7% 0.00 0.8 0.8
Emb N | 63.0% | 5.9% | 68.9% 0.22 1.2 14
Y | 62.5% | 6.1% | 68.6% 0.30 1.6 1.9

F | N |53.6% | 51% | 58.8% 0.51 5.5 6.1
W 5.8% | 70.8% | 22.86 5.2 | 28.0

K| N | 22.0% | 4.7% | 26.7% 1.50 1.0 2.5

Y | 18.9% | 4.0% | 22.9% 2.50 1.1 3.6

S | N |522% | 4.9% | 57.1% 0.23 1.2 1.5

Y | 52.6% | 5.4% | 58.0% 0.32 1.1 14

FTS | C | N | 20.2% | 3.2% | 23.5% 0.01 0.8 0.8
Y | 19.9% | 2.9% | 22.8% 0.01 1.1 1.1

K| N|21.6% | 34% | 25.0% 1.64 5.0 6.7

Y | 21.9% | 3.5% | 25.4% 7.95 | 18.8 | 26.8

P |N|19.0% | 3.6% | 22.6% 0.00 0.9 0.9

Y | 17.5% | 3.8% | 21.2% 0.01 1.0 1.0

S | N|203% | 3.4% | 23.7% 1.13 1.1 2.2

Y | 19.4% | 2.9% | 22.2% 2.40 1.4 3.8

Meili | C | N 1.9% | 0.2% 2.1% 0.01 0.7 0.7
Y 2.9% | 0.4% 3.2% 0.10 1.3 1.4

K |N| 452% | 5.6% | 50.8% 0.33 7.0 7.3

Y | 46.6% | 6.4% | 53.0% 4.42 | 134 | 17.8

P | N|206% | 3.0% | 23.6% 0.28 5.2 5.5

Y | 20.4% | 3.0% | 23.4% 7.96 4.8 | 12.8

S | N|285% | 3.9% | 32.3% 0.17 6.0 6.2

Y | 31.4% | 4.6% | 36.0% 4.56 6.3 | 10.9

Type | C MO.Q% 1.6% | 0.30| 08| 1.1
Y 1.8% | 0.4% 2.1% 0.68 1.1 1.7

K| N |41.2% | 54% | 46.6% 1.79 6.3 8.0

Y | 45.6% | 5.0% | 50.6% | 10.54 | 20.1 | 30.6

P |N|20.7% | 3.9% | 24.6% 2.06 3.1 5.2

Y | 20.0% | 4.1% | 24.1% 7.13 3.3 | 10.4

S | N | 25.0% | 3.9% | 28.8% 0.53 2.0 2.5

Y | 24.5% | 3.5% | 28.0% 3.65 2.7 6.3

Table 18: TOEFL-QA

Appendix

Appendix

A.5 Search Engine Hyperparameters

This section lists the effective document-processing and ranking settings that affect retrieval

results in the experiment implementation. In most cases, default settings were used. Only a

small number of settings were explicitly set by the implementation (listed below).

o Explicit (non-default or implementation-defined) settings:

>

>

Top-k: k = 10 for all search engines and retriever variants.

No dataset filtering was applied at query time (all queries run against the full combined
corpus).

SQLite FTS query normalization: lowercase + extract Unicode word tokens via regex \w+.
Chunking for chunk indices/collections: max 512 characters, 50 characters overlap, prefer
sentence boundaries.

pgvector: cosine distance search over halfvec(2560) embeddings with an HNSW index

(without explicit HNSW parameter overrides).

o SQLite Full-Text Search (FTS5 + BM25):

>

Index schema (full documents): CREATE VIRTUAL TABLE content fts USING fts5(content,
content _id);

Index schema (chunks): CREATE VIRTUAL TABLE content fts chunks USING fts5(chunk,
content _id UNINDEXED, chunk index UNINDEXED, dataset UNINDEXED);

Query preprocessing: the query is converted into a whitespace-separated list of lowercase
Unicode word tokens using the regex \w+ (i.e., punctuation is removed).

Tokenizer /stopwords/stemming/synonyms: no explicit tokenizer, stopword list, stemming,
or synonym configuration was applied. This means the defaults from the engine were used.
Ranking: results are ordered by the FTS5 built-in rank column (default BM25 ranking),

ascending.

o pgVector (PostgreSQL + pgvector):

>

>

Docker image: pgvector/pgvector:pgl8-trixie

Reported Version: PostgreSQL 18.0 (Debian 18.0-1.pgdgl3+3) on x86 64-pc-linux-gnu,
compiled by gcc (Debian 14.2.0-19) 14.2.0, 64-bit

pgVector version: 0.8.1

Embedding model: Qwen3-4B embeddings with 2,560 dimensions; stored as halfvec(2560).
Similarity metric: cosine distance (<=> operator).

Approximate Nearest Neighbor (ANN) index: CREATE INDEX ... USING hnsw (embedding
halfvec cosine ops).

HNSW parameters (m, ef_construction, ef search): not explicitly set in the implemen-

tation (engine defaults for the used pgvector version).

o Typesense:

>

>

Docker image: typesense/typesense:29.0

Version: 29.0

XI

Appendix

v

Schema (full documents): content (string), dataset (string, facet), content_id (int32)

v

Schema (chunks): chunk (string), dataset (string, facet), content_id (int32), chunk_index
(int32)

» Query parameters: q = <query>, query by = content (or chunk), per_page = 10

v

Tokenization/stopwords/stemming/synonyms and ranking settings: no custom configura-
tion was applied, using the defaults.

Meilisearch:

» Docker image: getmeili/meilisearch:v1.22.3

» Version: 1.22.3, commit c36a3239ca387ae662e13ebea697919cab4e5c75

» Index setup: primary key id; documents contain content (or chunk), dataset, content_id

» Query parameters: q = <query>, limit = 10

v

Tokenization/stopwords/stemming/synonyms: no custom configuration was applied (en-

gine defaults).

v

Ranking: Meilisearch default ranking rules were used (no custom ranking rule order).

XII

List of Figures

B List of Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

A general definition of a RAG System, combining documents D and a user query g
with a retriever R and a generator G to produce an answer to a query a. 4
Based on the RAG definition in Figure 1, this shows the version used in the
experiment in this thesis, adding a search engine which the retriever uses along with
a search strategy to retrieve documents.o 22
The best embedding-based and best Full-Text search approaches with their %
Correct, as shown in Table 5. 34
The relationship between document recall and % correct. Each point in the diagram
represents a search engine configuration, colored by search engine type and
distinguished by shape. Golden and None baselines are excluded. 36
The number of retrieved documents vs. the completion time in seconds for the
Typesense configuration with keyword search and reranking. 37
Pearson correlation between average content length and average completion time

per retrieval configuration. Content length is defined as the sum of character counts
across all documents used to answer a question. Chunk-based retrieval
configurations, including embedding-based approaches, are excluded because
character counts reflect full document lengths rather than the subset of text
contained in retrieved chunks. 38
The performance per dataset for the overall best retrieval configuration as shown in
Table 3: Meilisearch with keyword search reranked. 43
The performance difference from % Correct between Golden and best-performing
configuration, per dataset. 44
Benefit percentage heatmap showing potential gain from combining pairs of search
engines. Abbreviations: Emb=Embeddings, FTS=Full-Text Search,
Meili=Meilisearch, Type=Typesense, Chk=Chunk, Kwd=Keyword,
Pass=Passthrough, Srch=Search, Full=Full Document, R=Reranked. 47

X111

List of Tables

C List of Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Overview of the original datasets as outlined in [2]: ‘The column “T” represents
dataset type with values “K” for “Knowledge”, “R” for “reasoning”, and “C” for
“reading comprehension”. [..] We also report number of questions in each set (# Q),
number and percentage of questions retained after filtering (# Kept and % Kept)
out questions needing no context[..]’. “Avg Len” is the average size of the context
that is provided to the model to answer the questions from each dataset in

L70) S 0= PP 19
Number of questions per dataset before and after filtering. 22
Performance per search engine in all run configurations. Values marked in

are the best overall, values in light green are the best per search engine,
values marked are the worst overall, values in light red are the worst per
search engine - for configurations except Golden and None. For Doc Recall, %
Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time,
average completion time, and average response time, lower is better. 29
Summary per dataset across all run configurations. Doc Recall shows the average
percentage of questions where the gold document was retrieved. Values marked in
are the best overall, values in light green are the 2nd best overall, values
marked are the worst overall, values in light red are the 2nd worst overall.
For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for
average retrieval time, average completion time, and average response time, lower is
DO T, e e 30
Results for the best Full-Text Search configuration (One of BM25-based SQLite
Full-Text Search, Meilisearch or Typesense) vs. the best embedding-based
configuration. Doc Recall shows the percentage of questions where the gold
document was retrieved. Values marked in are the best overall, values in
light green are the best per search engine, values marked are the worst
overall, values in light red are the worst per search engine - for configurations
except Golden and None. For Doc Recall, % Correct, % Partial, % Correct +
Partial, higher is better, for average retrieval time, average completion time, and
average response time, lower is better. i 33
The top 3 Search engines with the highest % Correct grouped per dataset,
including the Golden and None results for reference. Doc Recall shows the
percentage of questions where the gold document was retrieved. Values marked in
are the best overall, values in light green are the 2nd best overall, values
marked are the worst overall, values in light red are the 2nd worst overall.
For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for

XIV

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18

List of Tables

average retrieval time, average completion time, and average response time, lower is
better. Marked values do not include the Golden and None results. 40
Top 30 search engine combinations ranked by potential retrieval benefit. Overlap
shows questions where both engines retrieved the correct document. Exclusive

shows questions where only one of the two engines retrieved the correct document.

Benefit percentage indicates improvement over the better single engine. 46
2WikiMultihopQ A .. \Y
(70185 = P \Y
HotpotQ A .o VI
MultiDoc2Dial VI
MultiFieldQA VII
MUSIQUE .« .ottt e VII
NarrativeQ A ... e VIII
Naturalquestion VIII
QA S P R . X
QUA LY o X
TOEF L-Q A e X

XV

List of Acronyms

D List of Acronyms

ANN: Approximate Nearest Neighbor

ASR: Automatic Speech Recognition

ASR-MT-TTS: Automatic Speech Recognition - Machine Translation - Text-to-Speech
RAG: Retrieval Augmented Generation

LLM: Large Language Model

NLP: Natural Language Processing

BERT: Bidirectional encoder representations from transformers
BM25: Best Matching 25

HNSW: Hierarchical Navigable Small World

PRF: Probabilistic Relevance Framework

QA: Question Answering

FTS: Full-Text Search

XVI

Bibliography

E Bibliography

1]

[11]

[12]

[13]

[14]

S. E. Robertson and K. S. Jones, “Relevance weighting of search terms,” Journal of the
American Society for Information Science, vol. 27, no. 3, pp. 129-146, 1976, doi: https://
doi.org/10.1002/asi.4630270302.

Xinze Li, Yixin Cao, Yubo Ma, and Aixin Sun, “Long Context vs. RAG for LLMs: An
Evaluation and Revisits,” Dec. 27, 2024. [Online]. Available: https://arxiv.org/abs/2501.
01880

Patrick Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks,” Apr. 12, 2021. [Online]. Available: https://arxiv.org/abs/2005.11401

Yunfan Gao et al., “Retrieval-Augmented Generation for Large Language Models: A
Survey,” Mar. 27, 2024. [Online|. Available: https://arxiv.org/abs/2312.10997

Panda Smith, “Build a search engine, not a vector DB.” Accessed: Sept. 05, 2025. [Online].
Available: https://blog.elicit.com /search-vs-vector-db/

Arvind Neelakantan et al., “Text and Code Embeddings by Contrastive Pre-Training,”
Jan. 24, 2022. [Online]. Available: https://arxiv.org/abs/2201.10005

Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar, “Nomic
Embed: Training a Reproducible Long Context Text Embedder,” Feb. 03, 2025. [Online].
Available: https://arxiv.org/abs/2402.01613

Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar, “Nomic
Embed: Training a Reproducible Long Context Text Embedder,” Feb. 2025. [Online].
Available: https://arxiv.org/abs/2402.01613

Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro, Iryna Gurevych, Nikolai Rozanov,
and Goran Glavas, “Common Sense or World Knowledge? Investigating Adapter-Based
Knowledge Injection into Pretrained Transformers,” Oct. 11, 2020. [Online]. Available:
https://arxiv.org/abs/2005.11787

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang, “An Empirical
Study of Catastrophic Forgetting in Large Language Models During Continual Fine-
tuning.” [Online]. Available: https://arxiv.org/abs/2308.08747

Ruize Wang et al., “K-ADAPTER: Infusing Knowledge into Pre-Trained Models with
Adapters,” Dec. 28, 2020. [Online]. Available: arxiv:2002.01808v5

Oded Ovadia, Menachem Brief, Moshik Mishaeli, and Oren Elisha, “Fine-Tuning or
Retrieval? Comparing Knowledge Injection in LLMs,” Jan. 30, 2024. [Online]. Available:
https://arxiv.org/abs/2312.05934

Tianjun Zhang et al., “RAFT: Adapting Language Model to Domain Specific RAG,” June
05, 2024. [Online]. Available: https://arxiv.org/abs/2403.10131v2

Sebastian Borgeaud et al., “Improving language models by retrieving from trillions of

tokens,” Feb. 07, 2022. [Online]. Available: https://arxiv.org/abs/2112.04426

XVII

https://doi.org/https://doi.org/10.1002/asi.4630270302
https://doi.org/https://doi.org/10.1002/asi.4630270302
https://arxiv.org/abs/2501.01880
https://arxiv.org/abs/2501.01880
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2312.10997
https://blog.elicit.com/search-vs-vector-db/
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2005.11787
https://arxiv.org/abs/2308.08747
arxiv:2002.01808v5
https://arxiv.org/abs/2312.05934
https://arxiv.org/abs/2403.10131v2
https://arxiv.org/abs/2112.04426

[21]

Bibliography

“Introducing Contextual Retrieval,” Sept. 19, 2024. [Online]. Available: https://www.

anthropic.com /news/contextual-retrieval

Timo Schick et al., “Toolformer: Language Models Can Teach Themselves to Use Tools,”
Feb. 09, 2023. [Online|. Available: https://arxiv.org/abs/2302.04761

Shunyu Yao et al., “REACT: SYNERGIZING REASONING AND ACTING IN LAN-
GUAGE MODELS,” Mar. 10, 2023. [Online|. Available: https://arxiv.org/abs/2210.03629

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang, “LIGHTRAG: SIMPLE
AND FAST RETRIEVAL-AUGMENTED GENERATION,” Oct. 08, 2024. [Online].
Available: https://arxiv.org/abs/2410.05779

Masoomali Fatehkia, Ji Kim Lucas, and Sanjay Chawla, “T-RAG: LESSONS FROM THE
LLM TRENCHES,” June 06, 2024. [Online]. Available: https://arxiv.org/abs/2402.07483

Zahra Sepasdar, Sushant Gautam, Cise Midoglu, Michael A. Riegler, and Pal Halvorsen,
“Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study,” Sept.
26, 2024. [Online|. Available: https://arxiv.org/abs/2409.17580

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su, “Hip-
poRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models,” Jan.
14, 2025. [Online]. Available: https://arxiv.org/abs/2405.14831

Zhengbao Jiang et al., “Active Retrieval Augmented Generation,” Oct. 22, 2023. [Online].
Available: https://arxiv.org/abs/2305.06983

Hervé Déjean, “Let your LLM generate a few tokens and you will reduce the need for
retrieval,” Dec. 16, 2024. [Online]. Available: https://arxiv.org/abs/2412.11536

Brian J Chan, Chao-Ting Chen, Jui-Hung Cheng, and Hen-Hsen Huang, “Don't Do RAG:
When Cache-Augmented Generation is All You Need for Knowledge Tasks,” Feb. 23, 2025.
[Online]. Available: https://arxiv.org/abs/2412.15605v2

Alexandria Leto, Cecilia Aguerrebere, Ishwar Bhati, Mariano Tepper, Ted Willke, and
Vy Ai Vo, “Toward Optimal Search and Retrieval for RAG,” Nov. 11, 2024. [Online].
Available: https://arxiv.org/abs/2411.07396

Sumit Soman and Sujoy Roychowdhury, “OBSERVATIONS ON BUILDING RAG
SYSTEMS FOR TECHNICAL DOCUMENTS,” Mar. 31, 2024. [Online]. Available:
arxiv:2404.00657v1

Orion Weller, Benjamin Van Durme, Dawn Lawrie, Ashwin Paranjape, Yuhao Zhang,
and Jack Hessel, “Promptriever: Instruction-Trained Retrievers Can Be Prompted Like
Language Models,” Sept. 17, 2024. [Online]. Available: https://arxiv.org/abs/2409.11136
Yue Yu et al., “RankRAG: Unifying Context Ranking with Retrieval-Augmented Gener-
ation in LLMS,” July 02, 2024. [Online]. Available: https://arxiv.org/abs/2407.02485
Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling, “Corrective Retrieval Augmented
Generation,” Oct. 07, 2024. [Online|. Available: https://arxiv.org/abs/2401.15884

XVIII

https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/news/contextual-retrieval
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2410.05779
https://arxiv.org/abs/2402.07483
https://arxiv.org/abs/2409.17580
https://arxiv.org/abs/2405.14831
https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2412.11536
https://arxiv.org/abs/2412.15605v2
https://arxiv.org/abs/2411.07396
arxiv:2404.00657v1
https://arxiv.org/abs/2409.11136
https://arxiv.org/abs/2407.02485
https://arxiv.org/abs/2401.15884

[33]

[41]

[42]

Bibliography

Xin Zhang et al., “mGTE: Generalized Long-Context Text Representation and Reranking
Models for Multilingual Text Retrieval,” Nov. 12, 2024.

Vladimir Blagojevic, “Enhancing RAG Pipelines in Haystack: Introducing DiversityRanker
and LostInTheMiddleRanker,” Aug. 2023.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi, “SELF-
RAG: LEARNING TO RETRIEVE, GENERATE, AND CRITIQUE THROUGH SELF-
REFLECTION,” Oct. 17, 2023. [Online]. Available: https://arxiv.org/abs/2310.11511

Yuan Xia, Jingbo Zhou, Zhenhui Shi, Jun Chen, and Haifeng Huang, “Improving Retrieval
Augmented Language Model with Self-Reasoning,” Dec. 19, 2024. [Online|. Available:
https://arxiv.org/abs/2407.19813

Siran Li, Linus Stenzel, Carsten Eickhoff, and Seyed Ali Bahrainian, “Enhancing Retrieval-
Augmented Generation: A Study of Best Practices,” Jan. 13, 2025. [Online]. Available:
https://arxiv.org/abs/2501.07391

Zekun Xi et al., “OmniThink: Expanding Knowledge Boundaries in Machine Writing
through Thinking,” Feb. 20, 2025. [Online]. Available: https://arxiv.org/abs/2501.09751
v2

Zijun Yao et al., “SEAKR: Self-aware Knowledge Retrieval for Adaptive Retrieval Aug-
mented Generation,” June 27, 2024. [Online|. Available: https://arxiv.org/abs/2406.19215
vl

Stephen Robertson and Hugo Zaragoza, “The Probabilistic Relevance Framework: BM25
and Beyond,” 2009.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei, “AGENTIC RE-
TRIEVAL-AUGMENTED GENERATION: A SURVEY ON AGENTIC RAG,” Feb. 04,
2025. [Online|. Available: https://arxiv.org/abs/2501.09136

Nathan J. Anderson, Caleb Wilson, and Stephen D. Richardson, “Lingua: Addressing
Scenarios for Live Interpretation and Automatic Dubbing,” Sept. 12, 2022.

Robert Friel, Masha Belyi, and Atindriyo Sanyal, “RAGBench: Explainable Benchmark for
Retrieval-Augmented Generation Systems,” June 25, 2024. [Online]. Available: https://
arxiv.org/abs/2407.11005

Daniel Fleischer, Moshe Berchansky, Moshe Wasserblat, and Peter Izsak, “RAG Foundry:
A Framework for Enhancing LLMs for Retrieval Augmented Generation,” Aug. 05, 2024.
[Online]. Available: https://arxiv.org/abs/2408.02545

Satyapriya Krishna et al., “Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-
Augmented Generation,” Jan. 24, 2025. [Online]. Available: https://arxiv.org/abs/2409.
12941

XIX

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2407.19813
https://arxiv.org/abs/2501.07391
https://arxiv.org/abs/2501.09751v2
https://arxiv.org/abs/2501.09751v2
https://arxiv.org/abs/2406.19215v1
https://arxiv.org/abs/2406.19215v1
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2407.11005
https://arxiv.org/abs/2407.11005
https://arxiv.org/abs/2408.02545
https://arxiv.org/abs/2409.12941
https://arxiv.org/abs/2409.12941

[43]

[44]

[48]

[49]

[50]

Bibliography

T. Kwiatkowski et al., “Natural Questions: A Benchmark for Question Answering
Research,” Transactions of the Association for Computational Linguistics, vol. 7, pp. 453—

466, 2019, doi: 10.1162/tacl_a_ 00276.

X. Ho, A.-K. Duong Nguyen, S. Sugawara, and A. Aizawa, “Constructing A Multi-hop
QA Dataset for Comprehensive Evaluation of Reasoning Steps,” in Proceedings of the 28th
International Conference on Computational Linguistics, D. Scott, N. Bel, and C. Zong,
Eds., Barcelona, Spain (Online): International Committee on Computational Linguistics,

2020, pp. 6609-6625. doi: 10.18653/v1/2020.coling-main.580.
Z. Yang et al., “HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question

Answering,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds., Brussels,
Belgium: Association for Computational Linguistics, 2018, pp. 2369-2380. doi: 10.18653/
v1/D18-1259.

H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “J) MuSiQue: Multihop
Questions via Single-hop Question Composition,” Transactions of the Association for

Computational Linguistics, vol. 10, pp. 539-554, 2022, doi: 10.1162/tacl_a_00475.

Y. Bai et al., “LongBench: A Bilingual, Multitask Benchmark for Long Context Under-
standing,” in Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), L.-W. Ku, A. Martins, and V. Srikumar, Eds.,
Bangkok, Thailand: Association for Computational Linguistics, 2024, pp. 3119-3137. doi:
10.18653/v1/2024.acl-long.172.

T. Kodisky et al., “The NarrativeQA Reading Comprehension Challenge,” Transactions
of the Association for Computational Linguistics, vol. 6, pp. 317-328, 2018, doi: 10.1162/
tacl a 00023.

P. Dasigi, K. Lo, L. Beltagy, A. Cohan, N. A. Smith, and M. Gardner, “A Dataset of Infor-

9

mation-Seeking Questions and Answers Anchored in Research Papers,’

the 2021 Conference of the North American Chapter of the Association for Computational

in Proceedings of

Linguistics: Human Language Technologies, K. Toutanova, A. Rumshisky, L. Zettlemoyer,
D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.,
Online: Association for Computational Linguistics, 2021, pp. 4599-4610. doi: 10.18653/
v1/2021.naacl-main.365.

R. Y. Pang et al., “QuALITY: Question Answering with Long Input Texts, Yes!,” in
Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, M. Carpuat, M.-C. de
Marneffe, and I. V. Meza Ruiz, Eds., Seattle, United States: Association for Computational
Linguistics, 2022, pp. 5336-5358. doi: 10.18653/v1/2022.naacl-main.391.

C. Wang et al., “Novel QA: Benchmarking Question Answering on Documents Exceeding

200K Tokens.” [Online|. Available: https://arxiv.org/abs/2403.12766

XX

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2022.naacl-main.391
https://arxiv.org/abs/2403.12766

[52]

[53]

[54]

Bibliography

S. Feng, S. S. Patel, H. Wan, and S. Joshi, “MultiDoc2Dial: Modeling Dialogues Grounded
in Multiple Documents,” in Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, Association for Computational Linguistics, 2021, pp. 6162—
6176. doi: 10.18653/v1/2021.emnlp-main.498.

B.-H. Tseng, S.-S. Shen, H.-Y. Lee, and L.-S. Lee, “Towards machine comprehension
of spoken content: Initial TOEFL listening comprehension test by machine,” in INTER-
SPEECH, 2016.

C. An et al., “L-Eval: Instituting Standardized Evaluation for Long Context Language
Models,” in Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), L.-W. Ku, A. Martins, and V. Srikumar, Eds.,
Bangkok, Thailand: Association for Computational Linguistics, 2024, pp. 14388-14411.
doi: 10.18653/v1/2024.acl-long.776.

“opt-0ss-120b & gpt-oss-20b Model Card,” Aug. 05, 2025. [Online]. Available: https://
arxiv.org/pdf/2508.10925

“GPT-40 System Card,” Aug. 08, 2024. [Online]. Available: https://cdn.openai.com/gpt-
4o-system-card.pdf

K. Enevoldsen et al., “MMTEB: Massive Multilingual Text Embedding Benchmark,” arXiv
preprint arXiv:2502.13595, 2025, doi: 10.48550/arXiv.2502.13595.

Feng Wang, Yuqing Li, and Han Xiao, “jina-reranker-v3: Last but Not Late Interaction
for Listwise Document Reranking,” Oct. 06, 2025. [Online]. Available: https://arxiv.org/
abs/2509.25085

“SQLite FTS5 Extension.” Accessed: Nov. 12, 2025. [Online]. Available: https://sqlite.org/
ftsh.html

“BM25.” Accessed: Nov. 12, 2025. [Online]. Available: https://docs.paradedb.com/
documentation/concepts/bm25

“Ranking and reranking” Accessed: Nov. 12, 2025. [Online]. Available: https://www.
elastic.co/docs/solutions/search /ranking

“BM25.” Accessed: Nov. 12, 2025. [Online]. Available: https://docs.singlestore.com/db/v
9.0/reference/sql-reference /full-text-search-functions/bm-25/

“Return the Score Details - Atlas - MongoDB Docs.” Accessed: Nov. 12, 2025. [Online].
Available: https://www.mongodb.com/docs/atlas/atlas-search/score/get-details/#bm25
“pgvector/pgvector: Open-source vector similarity search for Postgres.” [Online]. Available:
https://github.com/pgvector/pgvector

“Ranking and Relevance.” Accessed: Nov. 12, 2025. [Online]. Available: https://typesense.
org/docs/guide/ranking-and-relevance.html#text-match-score-type

“Built-in ranking rules.” Accessed: Nov. 12, 2025. [Online]. Available: https://www.

meilisearch.com/docs/learn /relevancy /ranking_ rules

XXI

https://doi.org/10.18653/v1/2021.emnlp-main.498
https://doi.org/10.18653/v1/2024.acl-long.776
https://arxiv.org/pdf/2508.10925
https://arxiv.org/pdf/2508.10925
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://doi.org/10.48550/arXiv.2502.13595
https://arxiv.org/abs/2509.25085
https://arxiv.org/abs/2509.25085
https://sqlite.org/fts5.html
https://sqlite.org/fts5.html
https://docs.paradedb.com/documentation/concepts/bm25
https://docs.paradedb.com/documentation/concepts/bm25
https://www.elastic.co/docs/solutions/search/ranking
https://www.elastic.co/docs/solutions/search/ranking
https://docs.singlestore.com/db/v9.0/reference/sql-reference/full-text-search-functions/bm-25/
https://docs.singlestore.com/db/v9.0/reference/sql-reference/full-text-search-functions/bm-25/
https://www.mongodb.com/docs/atlas/atlas-search/score/get-details/#bm25
https://github.com/pgvector/pgvector
https://typesense.org/docs/guide/ranking-and-relevance.html#text-match-score-type
https://typesense.org/docs/guide/ranking-and-relevance.html#text-match-score-type
https://www.meilisearch.com/docs/learn/relevancy/ranking_rules
https://www.meilisearch.com/docs/learn/relevancy/ranking_rules

[67]

[70]

Bibliography

“Relevancy.” Accessed: Nov. 12, 2025. [Online|. Available: https://www.meilisearch.com/
docs/learn/relevancy /relevancy

N. F. Liu et al., “Lost in the Middle: How Language Models Use Long Contexts,” Trans-
actions of the Association for Computational Linguistics, vol. 12, pp. 157-173, 2024, doi:
10.1162/tacl_a_ 00638.

L. Zheng et al., “Judging LLM-as-a-judge with MT-bench and Chatbot Arena,” in Pro-
ceedings of the 87th International Conference on Neural Information Processing Systems,
Red Hook, NY, USA: Curran Associates Inc., 2023.

K. Opsahl-Ong et al., “Optimizing Instructions and Demonstrations for Multi-Stage
Language Model Programs,” in Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami,
Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 9340-9366. doi:
10.18653/v1/2024.emnlp-main.525.

J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical
Data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977, doi: 10.2307/2529310.

XXII

https://www.meilisearch.com/docs/learn/relevancy/relevancy
https://www.meilisearch.com/docs/learn/relevancy/relevancy
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.2307/2529310

	1 Introduction
	2 Related Work
	2.1 RAG origins
	2.2 Architecture of a system
	2.3 Embeddings
	2.4 Injecting knowledge into an through fine-tuning and related approaches
	2.5 Improving the Retrieval Process
	2.5.1 Tool use
	2.5.2 Using graph data structures
	2.5.3 Reducing the need for retrieval
	2.5.4 Building better retrieval methods
	2.5.5 Reranking
	2.5.6 Iteratively improving results

	2.6 Search approaches and algorithms
	2.7 Benchmarking systems
	2.8 Conclusion

	3 Method and Experiment Architecture
	3.1 Dataset Construction and Filtering
	3.2 Model Selection
	3.3 Experiment Architecture
	3.3.1 Search Engines
	3.3.2 Retriever Types
	3.3.3 Chunking Strategy

	3.4 Reranking
	3.5 Evaluation
	3.6 Experimental Infrastructure
	3.7 Key Considerations and Limitations

	4 Results
	4.1 Overall Performance Across Search Engines
	4.1.1 Best Embedding vs. Full-Text Search
	4.1.2 Statistical Significance
	4.1.3 Document Recall

	4.2 Timing Analysis
	4.3 Performance by Dataset
	4.4 Top 3 Configurations by Dataset
	4.4.1 Baseline Performance With Perfect Retrieval
	4.4.2 Baseline Performance Without Retrieval

	4.5 Overlap in Correctly Retrieved Documents Between Search Engines
	4.6 Conclusion

	5 Discussion
	5.1 Full-Text Search Performance Compared to Embeddings
	5.2 Dataset-Specific Performance Variation
	5.3 Reranking Effects
	5.4 Timing Implications
	5.5 Failures of Chunk-Based Retrieval with Full-Text Search
	5.6 Document Recall and Generation Failure
	5.7 Retrieval Dependency per Dataset
	5.8 Potential for Hybrid Retrieval
	5.9 Assessment and Recommendations
	5.9.1 Trade-offs Between Accuracy and Efficiency
	5.9.2 Context-Dependent Recommendations
	5.9.3 Dataset-Specific Considerations
	5.9.4 Limitations and Caveats
	5.9.4.1 Single Model Dependency
	5.9.4.2 Evaluation Methodology

	5.10 Conclusion

	6 Conclusion
	6.1 Key Findings
	6.2 Future Work

	A Appendix
	A.1 Answer Prompt
	A.2 Query rewriting prompts
	A.2.1 Search Query Prompt
	A.2.2 Keyword Prompt

	A.3 Evaluation Prompt
	A.4 Search Engine Results by Dataset
	A.5 Search Engine Hyperparameters

	B List of Figures
	C List of Tables
	D List of Acronyms
	E Bibliography

