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Task description

Retrieval-Augmented Generation (RAG) hat sich als vielversprechender Ansatz zur 

Verbesserung der Leistung von Large Language Models (LLMs) durch Integration externer Wis

sensquellen etabliert. Klassische RAG-Implementierungen nutzen dafür Vektor-Datenbanken 

und Embeddings für den semantischen Zusammenhang von Frage und Antwort, um Inhalte 

möglicher Antworten im zweiten Schritt an ein LLM zur Generierung der Antwort zu übergeben. 

Die Erstellung dieser Embeddings ist im Vergleich zu klassischen Datenbank-Indizes relativ 

aufwändig und ressourcenintensiv. Das Verfahren hat sich aber in der Praxis durchgesetzt, da 

es wesentlich effizienter als Finetuning ist.

Alternative Ansätze, wie die Nutzung von etablierten Methoden der Volltext-Suche, könnten 

diesen Prozess vereinfachen. Bislang fehlen jedoch eine systematische Untersuchung und ein 

Vergleich dieser unterschiedlichen Ansätze.

In der Masterarbeit soll die Hypothese untersucht werden, dass Volltext-such-basierte RAG-

Ansätze in bestimmten Anwendungsfällen eine vergleichbare Leistung zu Embedding-basierten 

Methoden erzielen können, bei gleichzeitig geringerem Implementierungsaufwand.

Zur Beantwortung der Hypothese soll ein Benchmark, der verschiedene RAG-Varianten (e.g. 

mit und ohne Embeddings, verschiedene Suchstrategien etc.) vergleicht, durchgeführt werden. 

Die unterschiedlichen RAG-Implementierung werden gezielt evaluiert und anhand geeigneter 

Kriterien ausgewertet.
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Introduction

1 Introduction
Large Language Models (LLMs) are trained on text corpora collected up to a specific cutoff date, 

which means they lack knowledge about events and information that occurred after this cutoff 

date. To extend the knowledge of LLMs with new information or domain-specific knowledge 

outside of the trained parametric memory, Retrieval Augmented Generation (RAG) has become 

the established approach to incorporate this knowledge into LLM responses.

RAG works by performing a search in a database based on the user’s query to find relevant 

documents that might contain the answer to the question. These documents are then provided to 

the LLM, which generates an answer using the retrieved information. Research has shown that 

this approach performs significantly better than alternatives like fine-tuning, where additional 

knowledge is added to the model by retraining parts of it. RAG is also more flexible since only 

the knowledge corpus in the database needs to be updated, rather than fine-tuning an entire 

model each time. This is particularly important for data that changes regularly and needs to 

be updated frequently in the LLM.

However, the retrieval pipeline1 introduces considerable complexity to make a RAG system 

work reliably. Today, vector embeddings are most commonly used in practice for retrieval, 

because of their ability to search for semantically similar documents based on a user query. 

Using an embeddings-based approach requires maintaining a pipeline to keep these embeddings 

up-to-date. This means developers face mostly classical engineering challenges around large-

scale data and database management, rather than AI-specific problems like training models.

This raises the question: can RAG systems work effectively without using embeddings?

After all, the core task is just finding the right documents, which should be possible without 

embeddings. Full-text search has existed for a long time and is supported by many databases. 

It naturally comes to mind when thinking about retrieving documents based on a user query.

While databases need to perform indexing to enable full-text search, which is similar to 

having to maintain embeddings, the overall complexity is much lower. A database optimized 

for full-text search handles indexing and the creation of search indexes all by itself. This makes 

using these databases much less complex compared to building an embeddings pipeline where 

embeddings need to be kept up to date.

An embeddings pipeline usually consists of one data store where the actual content is located 

in human-readable text and another one where the embeddings are stored. The text content 

(not the embedding vectors) needs to be stored to pass it to the LLM to generate the response. 

To make the content searchable via text embeddings, the content has to be processed. First, it 

needs to be divided into useful chunks2, then the embeddings need to be generated for them. 

1The component responsible for finding the right documents from the database.
2Because embedding vectors can only capture a limited amount of tokens, text needs to be split into multiple 

smaller chunks to not overwhelm the embedding model.

1



Introduction

Creation of embeddings uses specialized embedding models. Most of the time these are hosted 

externally and accessed using APIs, with the providers charging for usage.

Finally, embeddings have to be stored in a format that makes it possible to search through 

them.

When searching in an embeddings database, embeddings need to be generated first for the 

input search query. These embeddings are then used to search in the database. Combined, all 

of these steps increase resource usage and response times of the overall application.

With a full-text database, the system only needs to add content to the database – and this 

requires the same effort as with embeddings since the content needs to be stored in a human 

readable format even when using embeddings. To search in the stored document corpus, only 

a search query is required. This can be the input query directly from the user or a transformed 

query. The database completely handles the index, developers only access the search function

ality. As a result, the overall system is less complex with a full-text database compared to an 

embeddings-based approach.

Both full-text search and embedding-based approaches require the same preprocessing 

pipeline: document retrieval, parsing, and database storage. The operational complexity for 

the preprocessing pipeline remains equivalent across both methods. However, full-text search 

offers a more straightforward implementation path for indexing content compared to the vector 

embedding approach.

Best Matching 25 (BM25) [1] has been the standard search algorithm for years, but newer 

databases like Typesense and Meilisearch now offer full-text search with different ranking 

algorithms. Since BM25 is the established approach, it’s worth investigating whether it should 

still be used or if alternatives might perform better in a RAG setting.

The core contribution of this thesis is examining whether RAG can be done effectively without 

embeddings and if it produces good results.

To answer this question, an experiment was designed which performs RAG tasks with different 

search methods on multiple datasets. To establish baseline results, a None retriever condition 

was tested in which the LLM has to generate an answer without any retrieved text input, relying 

only on its internal parametric memory. These datasets are pre-filtered and were constructed 

in [2] by filtering with the GPT-4o LLM from OpenAI to obtain questions that an LLM cannot 

answer from its parametric memory. Most of these are Question Answering (QA) tasks that 

aim to mimic typical chat applications. Other use cases like agents are out of scope and are 

topics for future research.

The remainder of this thesis is structured as follows: First, Section 2 reviews current research 

approaches on RAG, followed by Section 3 detailing the experimental design and implementa

tion. Section 4 reports the obtained results, followed by Section 5, which interprets the findings 

and addresses the research question. Finally, Section 6 concludes the thesis with key takeaways.
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2 Related Work
Current research in the area of RAG tends to focus on two topics: The improvement of how 

LLMs understand and process knowledge and methods to improve the retrieval of information 

for usage in RAG. Since the public release of ChatGPT in late 2022, many papers have been 

published in this field - it is very much an active area of research.

This chapter describes related work and current research areas to improve RAG. In 

Section 2.1, the origins of the RAG paradigm are described, followed by a general architecture 

overview in Section 2.2, leading up to a brief explanation of embeddings in Section 2.3, 

Section 2.4 explores knowledge injection through fine-tuning and related approaches. Section 2.5 

examines research focused on improving the retrieval process. Section 2.6 presents fundamental 

search algorithms, and finally Section 2.7 discusses approaches for evaluating RAG systems.

2.1 RAG origins

The term RAG was coined in the seminal paper by Lewis et al. in 2021 [3]. They introduced 

the method as a hybrid approach that combines pre-trained parametric memory embedded in 

a BART language model at the time, with non-parametric memory (dense vector retrieval of 

content, in the case of the paper text content from Wikipedia) to improve performance on 

knowledge-intensive Natural Language Processing (NLP) tasks. The language model, which 

marginalizes over retrieved documents during generation, achieved state-of-the-art results on 

open-domain question answering, reduced hallucination compared to purely parametric models, 

and demonstrated the ability to update knowledge by simply replacing the retrieval index 

without retraining. Two variants were proposed: RAG-Sequence, which uses the same retrieved 

document for the entire output sequence, and RAG-Token, which can utilize different documents 

for each generated token. They showed that this approach hallucinates less while being more 

factually correct than other approaches. Factual correctness was verified using FEVER, a fact-

check benchmark [3].

They also found that the quality of the given response ultimately depends on the quality of 

the retrieved documents. This is still true today.

Their research introduced a new way to update a model’s knowledge without having to re-

train it fully or fine-tune parts of it - a process which is expensive and needs a lot of resources.

While many improvements have been made to the way a RAG-System works since the paper 

was published, modern RAG-Systems look a lot like the one originally proposed.

The different architectures have been presented by Gao et al. in a comprehensive survey of 

RAG techniques for Large Language Models [4]. They categorize the evolution of the pattern 

into three paradigms: Naive RAG (basic retrieve-read framework, as outlined in Section 2.2), 

Advanced RAG (incorporating pre- and post-retrieval optimizations), and Modular RAG 

(flexible architectures with specialized components).
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The analyzed studies demonstrate that RAG effectively mitigates LLM limitations such as 

hallucination and outdated knowledge while generally outperforming fine-tuning approaches for 

knowledge-intensive tasks.

RAG presents a way to add new or external knowledge to an LLM without having to retrain 

or fine-tune the model, which makes these systems very interesting for a variety of use-cases. 

The most obvious is question-answering systems which can reply to a wide variety of user 

questions, but also chatbots, creating documents or generating software code.

2.2 Architecture of a RAG system

On a high level, a RAG system consists of two parts:

1. A retriever which fetches text content based on a user query

2. A generator which uses the retrieved content to generate a response to the query.

Formally, a RAG system can be expressed as follows:

𝐷𝑟 = 𝑅(𝐷, 𝑞)

𝑎 = 𝐺(𝑞, 𝐷𝑟)

Where 𝑅 is a retriever function which, given a user query 𝑞 and a set of documents 𝐷, retrieves 

relevant documents 𝐷𝑟. The relevant documents 𝐷𝑟 are then passed to the generator function 

𝐺 along with the original query 𝑞 to produce the final answer 𝑎. The generator is in almost all 

cases an LLM being called with a special prompt to produce an answer.

Figure 1 shows an overview of what such a system looks like on a high level.

User Query
(q)

Documents

(D)

Retriever

(R)

Generator

(G)

Answer

(a)

Relevant 

Documents

(D𝑟)

Figure 1: A general definition of a RAG System, combining documents 𝐷 and a user query 𝑞 with a 

retriever 𝑅 and a generator 𝐺 to produce an answer to a query 𝑎.

The system is opaque to the way the retriever works under the hood. The retriever can be 

a simple keyword-based search engine, a more complex embedding-based search engine, or a 

combination of both.

The quality and relevance of the retrieved documents are highly important for the quality of 

the response to the user query.
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Practitioners are expressing this as “If you want to make a good RAG tool […], you should 

start by making a search engine over those documents that would be good enough for a human 

to use themselves.” [5]

Plenty of research is currently being conducted to improve the search process so that the 

LLM used to generate the response has the most relevant content it needs to give an accurate 

response to the user query.

2.3 Embeddings

Retrieving content happens mostly by using text embeddings in industry practice today. With 

embeddings, all text content is first transformed into a high-dimensional vector representation 

which captures its semantic meaning. These vectors can then be searched for similarity to the 

input query using cosine distance or similar methods, returning only those pieces of content 

semantically similar to the input query.

Neelakantan et al. demonstrated that embeddings produced by pre-training on unsupervised 

data produce high-quality text and code embeddings [6] which can then be used to retrieve text 

based on semantic similarity.

Nussbaum et al. present nomic-embed-text-v1 [7], the first fully reproducible long-context text 

embedding model that achieves competitive performance with only 137 million parameters and 

8192 token context length. The model employs a three-stage training pipeline using architectural 

modifications to Bidirectional encoder representations from transformers (BERT). It demon

strates superior performance to OpenAI’s text-embedding-ada-002 and text-embedding-3-small 

on both short-context (MTEB) and long-context (LoCo) benchmarks. Notably, the authors 

release all training artifacts including curated datasets, training code, and model weights, 

addressing the lack of transparency in existing high-performing embedding models.

The same authors also introduce Nomic Embed v2 [8], the first general-purpose Mixture 

of Experts (MoE) text embedding model, addressing the efficiency challenges of scaling 

multilingual embedding models. Traditionally, these embedding models require 3-5x more 

parameters than monolingual counterparts to achieve comparable performance. The model uses 

an adapted XLM-RoBERTa architecture with 8 experts and top-2 routing, training on 1.6 

billion high-quality pairs, resulting in 475M total parameters with 305M active during inference. 

Experimental results demonstrate that the MoE approach outperforms similarly-sized dense 

models on both monolingual (BEIR) and multilingual (MIRACL) benchmarks. This work 

represents a fundamental shift from previous scaling approaches that relied solely on increasing 

dense model capacity.

While embeddings are very useful for RAG systems, their main downside is the resource 

intensive process of creating and keeping them up to date since in all cases this needs expensive 

AI-infrastructure to either host a model or use a provider to access embedding models via 

an API. When building these systems outside of lab tests, a considerable amount of software 
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engineering has to be done to build the overall system in a way that ensures information is kept 

up to date and embeddings are created for all text in the system.

2.4 Injecting knowledge into an LLM through fine-tuning and related 

approaches

Before the original RAG paper was published, Lauscher et al. [9] investigated adapter-based 

knowledge injection into BERT using bottleneck adapters rather than full model fine-tuning to 

avoid catastrophic forgetting3 of distributional knowledge.

While overall GLUE benchmark results showed limited improvements, the trained models 

demonstrated substantial performance gains on inference tasks requiring factual world knowl

edge and named entity information, but performed worse on tasks which required common 

sense reasoning. The authors concluded that explicit knowledge injection is effective for factual 

information but insufficient for complex reasoning tasks.

Similarly, Wang et al. proposed K-ADAPTER [11], a framework for injecting knowledge 

into pre-trained language models by keeping the original model parameters frozen and training 

compact knowledge-specific adapters independently. This improves upon previous methods 

where the resulting model would lose previously learned knowledge during fine-tuning.

Newer research by Ovadia et al. systematically compared unsupervised fine-tuning and RAG 

for knowledge injection in LLMs [12]. They evaluated three 7B-parameter models across MMLU 

benchmark tasks and a custom current events dataset containing information beyond the 

models’ training cutoff4. Their findings demonstrate that RAG consistently outperforms fine-

tuning for both previously encountered and entirely new knowledge. The authors attribute this 

superiority to RAG’s ability to provide relevant context alongside factual information while 

avoiding the catastrophic forgetting that can occur during fine-tuning. The study also reveals 

that LLMs struggle to internalize new factual information through unsupervised fine-tuning 

alone, though exposing models to multiple paraphrased variations of the same facts during 

training shows promise for improving knowledge retention.

Combining both approaches, Zhang et al. [13] propose RAFT (Retrieval-Augmented Fine 

Tuning), a new training strategy that fine-tunes LLMs for domain-specific RAG. The method 

trains models on question-answer pairs where some training instances include “golden” docu

ments which contain the answer along with distractor documents, while others contain only 

distractors, teaching the model which documents from a retrieval set are relevant for answering 

a question. RAFT then generates chain-of-thought style answers with verbatim citations from 

relevant documents. Experiments across different benchmarks demonstrate that RAFT consis

tently outperforms standard supervised fine-tuning approaches.

3Catastrophic forgetting is a phenomenon where an LLM forgets factual information it was originally trained 
on when it is fine-tuned for other tasks. [10]

4The training cutoff is the date when no more training data was collected and model training was started. 
Without relying on external sources, LLMs don’t have any knowledge about events that happened beyond that 
training cutoff date.
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Borgeaud et al. introduced RETRO (Retrieval-Enhanced Transformer) [14], a semi-paramet

ric language model that conditions on document chunks retrieved from a 2 trillion token 

database using frozen BERT embeddings and a chunked cross-attention mechanism. This 

approach is similar to RAG in that it uses a retrieval mechanism to augment a language model, 

but it integrates retrieval directly into the transformer architecture rather than as a separate 

step. In comparison with RAG, RETRO slightly outperforms it (45.5 accuracy of RETRO vs 

44.5 accuracy of RAG).

Despite using 25x fewer parameters than GPT-3, RETRO achieves comparable performance 

on benchmarks like the Pile and Wikitext103, demonstrating that retrieval from massive-

scale databases can effectively decouple computational scaling from model memorization. The 

approach shows consistent improvements across model sizes (150M-7B parameters) and can be 

retrofitted to existing models, while also reducing hallucinations and improving factual accuracy 

compared to purely parametric models.

In summary, the research results presented in this section indicate that it does not make much 

sense to pursue fine-tuning as a viable alternative to RAG, since it is less flexible and yields 

worse results than RAG. Even though Lauscher et al. and K-ADAPTER demonstrated better 

performance of their fine-tuning approach, they only compared a fine-tuned model with a vanilla 

BERT model, whereas current state-of-the-art LLMs are more complex and have significantly 

more parameters.

2.5 Improving the Retrieval Process

As established in earlier sections, to achieve good results with a RAG system, the quality and 

relevance of the retrieved documents are most important for the quality of the overall response. 

Therefore, it makes sense to focus on improving the retrieval part of a RAG system. This section 

and its subsections explore current research in this area.

Anthropic have proposed a way to enrich RAG-content by prepending chunk-specific explana

tory content to document chunks before creating embeddings. They call this pattern Contextual 

Retrieval [15]. This addresses the problem of chunks lacking sufficient context for accurate 

retrieval.

The method automatically generates contextual information based on the full document using 

an LLM and reduces top-20 chunk retrieval failure rates by 49% when combining the resulting 

embeddings with Contextual BM25 (from 5.7% to 2.9%), and achieves a 67% reduction (to 

1.9%) when further combined with reranking.

The study demonstrates that combining semantic embeddings with lexical matching (BM25), 

adding contextual information to chunks, and implementing reranking all contribute additively 

to retrieval performance improvements across multiple knowledge domains.
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2.5.1 Tool use

Tool use refers to the capability of LLMs to invoke external functions that extend their base 

functionality. State-of-the-art LLMs are trained to identify appropriate tools for a given task 

and generate structured function calls accordingly. If the LLM wants to use a tool, it outputs a 

tool invocation request, which the host application executes externally. The tool results are then 

provided back to the LLM as context, enabling it to generate a final response that incorporates 

the result of the function execution.

Toolformer [16] introduces this pattern in a self-supervised approach for training language 

models to use external tools through API calls. The method uses in-context learning before fine-

tuning the model on a dataset filtered by those API calls. Experimental results show that the 

resulting model, based on a 6.7B parameter GPT-J model, significantly outperforms baseline 

models and even much larger models like GPT-3 on mathematical reasoning, factual knowledge 

retrieval, and multilingual tasks while preserving core language modeling capabilities. The 

approach demonstrates that language models can learn to autonomously decide when and how 

to leverage external tools in zero-shot settings, though it is limited to single API calls per input.

Combining reasoning with tool use, Yao et al. introduce ReAct [17], a prompting paradigm 

that enables large language models to interleave verbal reasoning traces with task-specific 

actions. The approach combines the benefits of chain-of-thought reasoning with external envi

ronment interaction, using a simple Wikipedia API for knowledge-intensive tasks. ReAct consis

tently outperforms both reasoning-only and action-only baselines while providing enhanced 

interpretability and reduced hallucination compared to standard chain-of-thought approaches. 

The method’s effectiveness extends to fine-tuning scenarios, where ReAct demonstrates superior 

performance even with smaller models and limited training data, suggesting its potential as a 

foundation for integrating reasoning capabilities with external knowledge retrieval.

This shows an interesting direction for infusing new knowledge into existing language models 

at runtime by providing a search function which can be used like a search engine, making this 

a worthwhile area to explore for RAG systems.

2.5.2 Using graph data structures

LightRAG [18] addresses limitations of traditional retrieval-augmented generation systems 

by incorporating graph structures into text indexing and retrieval processes. They use large 

language models to extract entities and relationships from documents to construct knowledge 

graphs that capture the dependencies between information sources.

The system employs a dual-level retrieval paradigm which combines low- and high-level 

retrieval for narrower and broader topics, to better answer specific and abstract queries. Exper

imental evaluation across multiple datasets from the UltraDomain benchmark demonstrates 

that LightRAG consistently outperforms baseline RAG methods, particularly on datasets where 

baseline methods struggle to synthesize information across multiple document sources.
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Going in a similar direction, Fatehkia et al. present Tree-RAG (T-RAG) [19], a system 

that combines Retrieval-Augmented Generation with a fine-tuned Llama-2 7B model and a 

novel tree-based context component. The tree structure specifically addresses hierarchical entity 

relationships within organizations, which traditional RAG and knowledge graph approaches 

handle poorly. In human evaluations on 37 questions from organizational documents, T-RAG 

achieved 73% correct responses compared to 56.8% for standard RAG and 54.1% for fine-tuning 

alone, though the limited evaluation scale raises questions about the broader generalizability of 

these improvements.

Sepasdar et al. introduce Structured-GraphRAG [20], a framework that enhances RAG 

systems by automatically constructing knowledge graphs from structured datasets, specifically 

demonstrated using soccer data from the SoccerNet dataset. Unlike traditional GraphRAG 

approaches that require domain experts to design knowledge graphs, the researchers developed 

an automated method for transforming structured tabular data into graph representations. The 

system operates through a four-step process: knowledge graph construction, query translation 

(converting natural language to Cypher queries), information retrieval from the graph data

base, and answer generation using GPT-3/GPT-4 models. Evaluation on soccer data showed 

significant performance improvements over traditional RAG methods, achieving 64% accuracy 

compared to 36% for baseline approaches, while also demonstrating substantial execution time 

reductions.

While demonstrated on soccer data, the methodology is designed to be domain-agnostic and 

applicable to any structured dataset organized in tabular format, though the evaluation was 

conducted with a limited scope of 10 questions tested across 5 iterations each.

Their study shows that RAG systems dealing with structured data rather than text-only 

content can benefit from graph-based representations to better capture relationships and 

dependencies within the data, ultimately improving RAG results.

Extending graph-based RAG from structured tables to unstructured corpora, HippoRAG 

[21] introduces a neurobiologically inspired retrieval layer that treats a schemaless OpenIE 

knowledge graph as a hippocampal-style index for long-term memory in LLMs.

In contrast to other graph-based RAG methods, HippoRAG does not need corpus data to 

be in a graph format, but constructs a knowledge graph from unstructured text using OpenIE. 

During retrieval, it runs a Personalized PageRank algorithm over the graph to find relevant 

passages. Empirically, HippoRAG achieves sizable gains on multi-hop QA while being 6-13x 

faster and 10-30x cheaper than strong retrievers. The approach is unsupervised, incrementally 

updatable, and particularly effective for “path-finding” queries that require linking dispersed 

facts.

The presented studies indicate that using graph data structures rather than text-only 

approaches can yield better results when the underlying data benefits from structured repre

sentation and hierarchical relationships are important.
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2.5.3 Reducing the need for retrieval

Jiang et al. introduce Forward-Looking Active REtrieval augmented generation, FLARE [22], 

a method that enhances retrieval-augmented language models by actively deciding when and 

what to retrieve during generation, addressing the limitations of single-time retrieval approaches 

in long-form text generation tasks. FLARE iteratively generates a temporary next sentence 

and uses it as a query to retrieve relevant documents when the model exhibits low confidence, 

then regenerates the sentence conditioned on the retrieved information. The approach achieves 

superior performance compared to different retrieval baselines across four diverse long-form 

generation tasks, demonstrating that forward-looking retrieval queries that anticipate future 

content significantly outperform past-context-based approaches. The method is applicable to 

any large language model at inference time without requiring additional training, making it a 

practical solution for improving RAG systems.

Déjean [23] presents a method for training large language models to determine when RAG 

is necessary by developing an “I Know” (IK) classifier which predicts whether an LLM can 

answer questions using only its parametric memory. The method enables a reduction of over 

50% in retrieval operations across various question-answering datasets while maintaining or 

improving answer quality. The work provides empirical evidence that LLMs can be trained to 

assess their own knowledge limitations, with performance varying significantly across different 

dataset types and retrieval requirements.

Due to the need to train a model on the proposed behaviour, this approach is suitable only 

for use cases where the model already has extensive knowledge of the topic the RAG system is 

being built for. This makes it not suitable for the task explored in this thesis.

Chan et al. propose Cache-Augmented Generation (CAG) [24] as an alternative to RAG for 

knowledge-intensive tasks, leveraging the extended long context capabilities of modern LLMs. 

Their approach involves preloading all relevant documents into the LLM’s context window 

and then storing the resulting key-value (KV) cache offline, eliminating retrieval latency and 

potential retrieval errors inherent in traditional RAG systems. Experiments on SQuAD and 

HotPotQA benchmarks using Llama-3.1 8B demonstrate that CAG consistently achieves higher 

BERT Scores than both sparse (BM25) and dense (OpenAI embeddings) RAG baselines.

The authors conclude that, as long as the entire knowledge base fits within the model’s 

context window, CAG outperforms RAG, with the performance gap narrowing as the document 

collection size increases. This also means the approach is limited to scenarios where the 

entire knowledge base can fit within the model’s context window. For applications with small, 

constrained knowledge bases such as internal documentation or FAQs, CAG can provide a more 

effective alternative to RAG, though hybrid approaches combining preloading with selective 

retrieval may offer optimal solutions for larger-scale applications.

Li et al. conduct an evaluation comparing Long Context (LC) and RAG approaches for LLMs 

[2]. To assess conflicting findings in prior literature, the study employs a methodology that 
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filters out questions answerable from parametric knowledge, to make sure that their evaluation 

focuses on the retrieval and does not benchmark the LLM itself. It evaluates multiple retrieval 

methods (chunk-based, index-based, and summarization-based), and expands existing datasets 

to approximately 20,000 questions across 12 QA benchmarks.

Their experiments reveal that LC generally outperforms RAG (56.3% vs 49% accuracy), 

particularly with well-structured, dense contexts such as Wikipedia articles and narrative texts.

However, RAG demonstrates advantages when handling fragmented information, especially 

in dialogue-based scenarios and general questions requiring synthesis from multiple sources. 

Among retrieval methods tested, RAPTOR (a summarization-based approach using hierarchical 

clustering) achieved the best performance at 38.5% accuracy, outperforming chunk-based and 

index-based retrievers.

In summary, approaches that reduce retrieval needs have distinct limitations: FLARE enables 

adaptive retrieval at inference time, the “I Know” classifier requires domain-specific training 

data, and CAG is constrained by context window size. These methods work best when knowl

edge is stable and well-represented in the model’s training data, limiting applicability to use 

cases requiring frequent content updates or specialized information.

2.5.4 Building better retrieval methods

Leto et al. investigate optimization strategies for retrieval components in RAG pipelines [25], 

evaluating systems with two instruction-tuned LLMs and two dense retrieval models across 

three datasets. Key findings show QA performance plateaus at 5-10 retrieved documents, with 

gold document5 recall being more critical than search recall, with more gold documents yielding 

better results. Notably, the study demonstrates that approximate nearest neighbor search with 

reduced accuracy provides substantial speed and memory benefits with minimal performance 

loss.

Contrary to prior work, injecting noisy documents consistently degrades both correctness 

and citation quality, indicating that retrieval systems should prioritize retrieving relevant gold 

documents over maximizing retrieval quantity.

Soman and Roychowdhury conducted experimental studies on RAG systems for technical 

documents [26] using IEEE specifications and battery terminology, finding that sentence 

embeddings become unreliable with increasing chunk sizes, particularly when queries or docu

ments exceed 200 words. Their key finding was that similarity score thresholding for retrieval 

augmentation can be unreliable and potentially result in sub-optimal generator performance, 

while better contextual retrieval (sentence-based similarity with paragraph-level retrieval) and 

splitting definitions from terms in glossaries improved overall system performance. The authors 

demonstrated that chunk length significantly affects retriever embeddings and that keyword 

positioning within sentences influences retrieval accuracy, though they acknowledge the domain-

specific nature of their telecom-focused findings may limit generalizability.

5A document which contains the ground truth to a given question.
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Weller et al. introduce Promptriever [27], the first retrieval model capable of being prompted 

like language models to dynamically adjust relevance criteria on a per-query basis. Using 

LLaMA as a backbone, the authors train a Bi-encoder on a curated dataset of ~500k MS 

MARCO instances augmented with instance-level natural language instructions and “instruc

tion negatives” - cases where query-passage pairs become less relevant when specific instructions 

are added.

This approach would be used in the retrieval step in a RAG pipeline where a user query 

is transformed to a vector embedding for search in a vector database. Instead of a generic 

embedding model, Promptriever produces embeddings conditioned on the input instruction, 

enabling users to specify detailed relevance criteria (e.g., “movies before 2022 that are not co-

directed”) without requiring traditional filters or reranking approaches.

Promptriever achieves state-of-the-art performance on instruction-following retrieval bench

marks while maintaining competitive standard retrieval performance, and demonstrates the 

ability to reliably improve retrieval through zero-shot prompting.

These studies demonstrate that QA performance plateaus at 5 to 10 retrieved documents, 

with gold document recall being more critical than overall search recall, and that chunk 

sizes should not exceed 200 words to maintain embedding reliability. Since retrieving relevant 

documents proves more important than maximizing retrieval quantity, reranking techniques 

(Section 2.5.5) seem promising to ensure the limited number of documents provided to the 

generator are of highest relevance.

2.5.5 Reranking

Reranking is the process of ranking documents for relevance compared to a user query. In RAG, 

this step is performed after retrieving documents from the retriever, refining the document 

search results before passing them to the generator. Formally, this can be expressed as an 

additional step or as part of the retrieval component.

Yu et al. [28] present RankRAG, an instruction-tuned LLM which can rank relevant docu

ments and provide the answer to a user query based on the top-k reranked documents. The 

approach uses a two-stage training process that unifies ranking and generation tasks into a 

standardized question-context-answer format, enabling effective knowledge transfer across tasks. 

During inference, RankRAG adds an additional ranking step to traditional RAG pipelines, 

where the model first reranks retrieved contexts and then generates answers using the top-

ranked passages.

Experimental results using Llama3 8B and 70B models demonstrate that RankRAG 

significantly outperforms existing RAG methods. Additionally, the method shows strong gener

alization capabilities, achieving comparable performance to GPT-4 on biomedical benchmarks 

without domain-specific training, suggesting that the dual ranking and generation capabilities 

mutually enhance each other in RAG systems.
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Yan et al. propose Corrective Retrieval Augmented Generation (CRAG) [29], a plug-and-play 

framework that addresses the robustness issues in RAG systems when retrieval quality is poor. 

The approach employs a lightweight T5-based retrieval evaluator to assess document relevance 

and triggers three corrective actions: knowledge refinement for relevant documents, web search 

fallback for irrelevant retrievals, and a hybrid approach for ambiguous cases. Experimental 

results demonstrate significant performance improvements over standard RAG and Self-RAG, 

while maintaining minimal computational overhead.

Going in a similar direction, Zhang et al. present mGTE [30], a framework for building 

long-context multilingual text representation and reranking models. The system combines a 

hybrid text representation model capable of generating both dense and sparse vectors with a 

cross-encoder reranker, both trained on a large-scale multilingual dataset. Evaluation results 

demonstrate that their base-sized encoder outperforms the previous state-of-the-art XLM-R 

on natural language understanding benchmarks, while their retrieval models match the perfor

mance of larger BGE-M3 models and achieve superior results on long-context retrieval tasks.

Blagojevic introduces two novel ranking components for enhancing RAG pipelines in the 

Haystack framework [31]: DiversityRanker, which uses sentence transformers and a greedy 

algorithm to select semantically diverse documents from a relevance-filtered pool, and 

LostInTheMiddleRanker, which mitigates the lost in the middle problem6 by positioning the 

most relevant documents at the beginning and end of the LLM’s context window. Both compo

nents were evaluated on long-form question answering tasks and found to achieve a 20-30% 

increase in average pairwise cosine distance between context documents compared to baseline 

pipelines. However, the evaluation methodology primarily relied on diversity metrics rather 

than comprehensive answer quality assessment, limiting the conclusions about overall RAG 

performance improvements.

Proposing a more integrated approach, Asai et al. introduce SELF-RAG [32], a framework 

which reviews and critiques retrieved documents before using them to generate a response. 

They train an LLM to output retrieval tokens to trigger a retrieval model and critique tokens 

to evaluate the output and choose the best sources for answer generation.

For training, they distill GPT-4 feedback into a critic that labels training data with Retrieve/

ISREL/ISSUP/ISUSE tokens; the generator is then trained to predict both outputs and these 

tokens. At test time, only the generator and an external retriever are needed.

Across six tasks, SELF-RAG outperforms instruction-tuned and RAG baselines. Limitations 

include occasional unsupported generations despite citations, dependence on off-the-shelf 

retrieval and corpus choices, and sensitivity to training data scale. Human evaluations report 

good alignment of reflection tokens with annotator judgments.

6The lost in the middle problem is a phenomenon where LLMs when given a list of documents, seem to 
prioritize those documents at the start and end of the prompt, losing the information in the middle.
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Similarly, Xia et al. propose Self-Reasoning [33], an end-to-end framework that enhances 

Retrieval-Augmented Language Models by incorporating self-generated reasoning trajectories 

through three processes: relevance assessment, evidence selection with citation, and trajectory 

synthesis. The framework trains LLMs to internally evaluate and filter retrieved documents 

without external tools, requiring only 2,000 training samples compared to 46,000 for competing 

methods like SELF-RAG. Evaluated on various datasets, the approach demonstrates superior 

performance, particularly in fact verification tasks, while improving both reliability through 

better handling of noisy retrievals and traceability through explicit citation generation.

Li et al. conducted a comprehensive evaluation of RAG system components [34] through 74 

experiments across nine research questions, using TruthfulQA and MMLU datasets to assess 

performance variations across different RAG setups. The study introduced and tested several 

advanced RAG designs. Query expansion, where the input query is expanded into multiple 

keyword phrases relevant to answer the query, Contrastive In-Context Learning which includes 

correct and incorrect examples from the evaluation data as the knowledge base, and Focus 

Mode that performs sentence-level retrieval and ranking.

Results demonstrated that Contrastive In-Context Learning achieved the strongest perfor

mance improvements, significantly outperforming baseline RAG systems, while Focus Mode 

ranked second by prioritizing precise, relevant context over comprehensive coverage. Contrary to 

common assumptions, the study found that knowledge base size and document chunk variations 

had minimal impact on performance, with context quality and relevance proving more critical 

than quantity.

The focus mode shows that reranking is a valid approach to improve RAG generation results. 

Query expansion seems like a promising way to improve full-text search for keywords in the 

context of this thesis.

The approaches range from training-intensive methods like SELF-RAG to lightweight alterna

tives like Self-Reasoning and plug-and-play solutions like CRAG. Hybrid approaches combining 

dense and sparse vectors with cross-encoder reranking, such as mGTE, demonstrate superior 

performance across different task types.

Reranking in general presents an interesting direction for improving RAG systems when the 

retrieval process itself fails to return good results. This could be the case when the initial 

retrieval returns suboptimal results. Even when not using web search, as is often the case with 

QA systems used in practice, refining search results before the generation process seems to be 

a promising direction.

In CRAG’s web search approach, they are using an LLM to pick the keywords to search 

for, a solution which could be applicable for searching using traditional full-text search as 

well. Interestingly, they are only using 10 documents - when having a reranker system to rate 

retrieved documents, it would be possible to retrieve 100 documents, rank them and then use 

the top 10 among the 100 ranked.
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Using these approaches from the different methods provides a promising direction for the 

topics in this thesis.

2.5.6 Iteratively improving RAG results

More recently, Xi et al. present OmniThink [35], a machine writing framework that emulates 

human-like iterative research processes by continuously expanding on retrieved information 

through alternating expansion and reflection cycles. The method introduces an Information 

Tree that hierarchically organizes retrieved information and a Conceptual Pool that distills 

insights to progressively expand both information and cognition boundaries during the writing 

process. Experimental results on the WildSeek dataset demonstrate superior performance over 

existing methods across metrics of relevance, breadth, depth, and novelty, with the authors 

introducing a new Knowledge Density metric to measure the ratio of meaningful content to 

total text volume.

Similar to CRAG, SEAKR (Self-aware Knowledge Retrieval) [36] introduces an adaptive 

retrieval-augmented generation approach that leverages the internal states of large language 

models to dynamically determine when to retrieve external knowledge and how to integrate it. 

The method extracts self-aware uncertainty by computing the Gram determinant and using it to 

trigger retrieval when thresholds are exceeded. SEAKR incorporates three adaptive mechanisms: 

self-aware retrieval for deciding when to search, self-aware re-ranking for selecting the most 

uncertainty-reducing knowledge snippets from retrieved candidates, and self-aware reasoning for 

choosing between different synthesis strategies. Their approach achieved substantial improve

ments over existing adaptive RAG methods, with ablation studies revealing that dynamic 

knowledge integration strategies contributed more to performance gains than the retrieval 

decision mechanism alone. The tuning-free approach demonstrates better generalization across 

tasks compared to fine-tuned alternatives, though it requires access to model internal states 

and incurs computational overhead from multiple generation sampling.

While these iterative approaches show promise, OmniThink’s multi-cycle process is primarily 

suited for long-form content generation, and SEAKR’s multiple generation sampling incurs 

computational overhead that may limit use in latency-sensitive QA scenarios.

2.6 Search approaches and algorithms

Robertson and Zaragoza present a theoretical exposition of the Probabilistic Relevance Frame

work (PRF) [37], which provides the formal foundation for BM25, one of the most successful 

document retrieval algorithms in information retrieval. The framework models document rele

vance as a hidden probabilistic variable, enabling systems to rank documents by their estimated 

probability of relevance to a given query through a principled mathematical derivation. The 

paper extends the basic BM25 algorithm to BM25F, which incorporates document structure 

and metadata (such as titles, abstracts, and anchor text) through weighted field combinations, 

making it particularly effective for web search and structured document collections.
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Singh et al. [38] define and systematize Agentic RAG, asking how embedding autonomous 

agents (reflection, planning, tool use, multi-agent collaboration) extends traditional RAG to 

enable adaptive retrieval, iterative refinement, and complex task orchestration. They contribute 

a taxonomy of architectures and workflow patterns, alongside a comparative analysis with prior 

RAG paradigms. The paper also surveys tools and frameworks and synthesizes applications 

across different domains.

Key conclusions highlight benefits in contextual precision and scalability via agentic orches

tration, while noting challenges in coordination complexity, latency, and ethical deployment.

Generally, the idea to compose multiple LLMs with tools to improve RAG seems promising.

Anderson et al. present Lingua [39], a speech-to-speech interpretation system that addresses 

error propagation issues in cascaded ASR-MT-TTS pipelines by incorporating pre-existing 

speech scripts. The system uses a fuzzy matching algorithm based on Levenshtein distance 

to align real-time Automatic Speech Recognition (ASR) transcriptions with script sentences 

at the phonemic level, achieving F1 scores above 0.95 with an average lag of 0.72 seconds. 

This approach significantly improves translation accuracy while reducing latency compared 

to traditional cascaded systems, making it particularly suitable for live speech interpretation 

scenarios where scripts are available in advance.

As this approach covers speech-to-speech, it is not directly relevant for the topic of this thesis, 

but demonstrates a simple algorithm to find matches between the transcript and manuscript, 

which can be useful for general text-matching for RAG.

2.7 Benchmarking RAG systems

To find out if the performance of a RAG system is optimal, various benchmarks exist.

Friel et al. introduced RAGBench [40], a comprehensive benchmark dataset comprising 100k 

examples across five industry domains for evaluating Retrieval-Augmented Generation systems, 

addressing the lack of standardized evaluation criteria in the field. The authors developed the 

TRACe evaluation framework, which measures four key metrics: utilization, relevance, adher

ence, and completeness of RAG system components. Through extensive benchmarking, they 

demonstrated that fine-tuned specialized models (DeBERTa-v3-Large) consistently outperform 

LLM-based evaluation methods such as GPT-3.5 judges, RAGAS, and TruLens across most 

evaluation tasks. The study reveals that context relevance estimation presents particular chal

lenges, requiring sophisticated understanding beyond semantic similarity to determine whether 

retrieved documents contain specific information necessary for accurate question answering.

Fleischer et al. introduce RAGFoundry [41], an open-source framework designed to address 

the complexity of implementing and evaluating RAG systems. The framework integrates the 

four key modules: data creation, training, inference, and evaluation into a unified workflow 

for RAG experimentation and evaluation. The data processing module employs components 

including loaders, retrievers, samplers, and prompters, while the training module supports 
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LoRA fine-tuning using the TRL framework. The evaluation module incorporates different 

local and global metrics for evaluation. The authors demonstrate the framework’s effectiveness 

by fine-tuning Llama-3 and Phi-3 models across three knowledge-intensive question-answering 

datasets (TriviaQA, PubmedQA, ASQA).

This framework distinguishes itself from production-oriented RAG tools by focusing specifi

cally on academic research needs and comprehensive evaluation capabilities.

Krishna et al. introduce FRAMES [42], a benchmark with 824 multi-hop Wikipedia questions 

evaluating retrieval-augmented generation across factuality, retrieval, and reasoning. State-of-

the-art LLMs score 0.408 without retrieval, improve modestly with BM25, and reach 0.729 

with oracle documents, where the LLM receives all documents used to create the question, 

simulating perfect retrieval. A multi-step retrieval-and-planning pipeline achieves 0.66, though 

errors persist in numerical and tabular reasoning. Future work targets stronger retrievers and 

process-supervised reasoning to close the performance gap.

While this presents an interesting approach, its focus on complex reasoning tasks is somewhat 

misaligned with the goals of this thesis. Its use of search queries is similar to the intended 

methodology.

2.8 Conclusion

This chapter looked at current research in RAG, revealing several key insights that inform the 

direction of this thesis.

The origins of RAG (Section 2.1) established that retrieval quality fundamentally deter

mines system performance, a finding that remains true today. While fine-tuning approaches 

(Section 2.4) can inject knowledge into language models, research demonstrates that RAG 

consistently outperforms fine-tuning for knowledge tasks, making it a better approach for adding 

knowledge to LLMs.

Current research on improving retrieval (Section 2.5) reveals multiple promising directions. 

Graph-based approaches show benefits for structured data and hierarchical relationships, 

though they are only suitable when the data has certain characteristics. Methods that reduce 

retrieval needs by figuring out if the LLM can answer a question from its parametric memory 

work best when knowledge is stable and well-represented in training data, limiting their use for 

specialized domain-specific or frequently-updated knowledge.

The most relevant findings center on building better retrieval methods. Research shows that 

QA performance plateaus at 5-10 retrieved documents, and chunk sizes should not exceed 

200 words to maintain embedding reliability. Since retrieving relevant documents proves more 

important than maximizing retrieval quantity, reranking techniques (Section 2.5.5) are a 

promising direction to ensure the limited documents provided to the generator are of highest 

relevance.
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Multiple studies demonstrate that combining semantic embeddings with lexical matching 

(BM25), adding contextual information to chunks, and implementing reranking all contribute 

additively to retrieval performance. Notably, sparse retrieval methods like BM25 can outperform 

dense embedding-based approaches in certain scenarios (Section 2.6), suggesting that traditional 

full-text search algorithms remain competitive and deserve further investigation.

The surveyed benchmarking approaches (Section 2.7) provide standardized evaluation frame

works, with metrics emphasizing context relevance, utilization, and adherence being critical for 

assessing RAG system quality.

These findings suggest a promising research direction: investigating whether traditional full-

text search approaches, enhanced with query expansion and reranking techniques, can achieve 

competitive performance with embedding-based RAG systems while avoiding the resource 

intensive process of creating and maintaining embeddings. This forms the central motivation 

for the work presented in subsequent chapters.

3 Method and Experiment Architecture
This chapter outlines the methodology used to conduct the experiments.

3.1 Dataset Construction and Filtering

The starting point was a multi-source dataset constructed of various questions with correct 

answers and the corresponding document corpus. It was originally filtered using GPT-4o to 

identify questions that cannot be answered from world knowledge alone [2]. The original contri

bution of this dataset was ensuring that answering these questions requires retrieval rather than 

relying on a model’s parametric knowledge. This makes it particularly suitable to benchmark 

retrieval quality.

The original dataset comprised 11,758 questions7 compiled from twelve different original 

datasets:

We select 12 long-context QA datasets frequently used in studies comparing LC8 and 

RAG: Natural Questions, 2WikiMultihopQA, HotpotQA, MuSiQue, MultiFieldQA, Narra

tiveQA, QASPER, QuALTY, Coursera, TOEFL-QA, and MultiDoc2Dial. We also include 

the NovelQA dataset, a high-quality, human-annotated resource derived from long-form 

novels.

— [2]

The datasets have been selected to provide a high variety of different questions catering to 

different use cases.

7In their paper, the authors mentioned a total of 13,628 questions. The dataset provided with the paper only 
contains 11,758 questions. Hence, this thesis can only use 11,758 questions.

8Long Context
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Natural Questions (NQ) [43] is a large-scale open-domain QA benchmark of real Google 

search queries paired with Wikipedia pages and annotated with both long and short answers 

or null labels. 2WikiMultihopQA [44] is a multi-hop QA dataset built from aligned Wikidata–

Wikipedia evidence, where templated questions are accompanied by explicit reasoning paths 

across multiple entities and documents. HotpotQA [45] consists of 113K Wikipedia-based 

QA pairs whose diverse questions require reasoning over multiple supporting documents with 

sentence-level supporting fact annotations and comparison questions. MuSiQue [46] is a multi-

hop QA benchmark formed by composing interdependent single-hop questions to questions that 

require reasoning over multiple steps, additionally including contrastive answerable/unanswer

able variants. MultiFieldQA [47] comprises roughly 150 manually curated questions over long 

single documents from law, government, encyclopedias, and scientific articles, targeting long-

context single-document comprehension. NarrativeQA [48] is a reading comprehension dataset 

based on full books and movie scripts, where questions require global narrative understanding 

across entire documents. QASPER [49] is an information-seeking QA dataset over 1,585 NLP 

papers with 5,049 questions authored by practitioners and supporting evidence. QuALITY [50] 

is a multiple-choice QA benchmark with about 5K-token passages and questions written by 

readers of the full text. NovelQA [51] is a long-context benchmark based on English novels with 

documents exceeding 200K tokens on average and human-authored questions with evidence 

annotations targeting deep understanding of text in LLMs. MultiDoc2Dial [52] is a dialogue 

dataset grounded in multiple datasets in which conversations are conditioned on multiple 

domain documents, requiring integration of information from multiple documents across four 

different domains. TOEFL-QA [53] is a multiple-choice listening comprehension dataset of 

963 examples from the TOEFL test with relatively short narrative contexts assessing English 

understanding. The Coursera QA [54] dataset contains 172 multiple-choice questions with 

multiple correct answers about course materials with an average context length of ~9K tokens 

per document. It tests knowledge-based comprehension of instructional content and was made 

for use in long-context evaluation.

Table 1 shows the distribution and actual sources from the original data sources as outlined 

in [2].

Note that for multi-document datasets (marked “multi” in the Doc column), the original 

benchmark provides a single pre-concatenated context containing all relevant source documents 

rather than separate document records. This means that even for multi-hop reasoning datasets 

like HotpotQA, MuSiQue, and 2WikiMultihopQA, which originally require evidence from 

multiple Wikipedia articles, this experiment treats each merged context as a single retrievable 

unit. Consequently, document recall measures whether this merged context was retrieved, not 

whether individual supporting documents were found separately.

For this experiment, the dataset was reduced to 6,284 questions for practical reasons.
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Dataset T Doc Source Avg Len # Q # Kept % Kept

NQ K multi Wikipedia 18,164.7 109 22 20

Coursera K multi Coursera 7,934.3 172 54 32

NovelQA C single books 67,000.0 210 109 52

2WikiMHQA R multi Wikipedia 7,191.3 300 152 51

HotpotQA R multi Wikipedia 10,602.7 200 93 47

MuSiQue R multi Wikipedia 12,974.3 200 140 70

MultiFieldQA C single papers, reports 5,706.1 150 121 81

NarrativeQA C single books, films 25,274.2 200 171 86

QASPER C single papers 5,350.3 224 221 99

QuALTY C single stories 5,089.2 202 202 100

TOEFL-QA C single exams 729.1 121 121 100

MultiDoc2Dial C multi dialogue 3,076.9 158 158 100

Table 1: Overview of the original datasets as outlined in [2]: ‘The column “T” represents dataset type 

with values “K” for “Knowledge”, “R” for “reasoning”, and “C” for “reading comprehension”. […] We 

also report number of questions in each set (# Q), number and percentage of questions retained after 

filtering (# Kept and % Kept) out questions needing no context[…]’. “Avg Len” is the average size of the 

context that is provided to the model to answer the questions from each dataset in tokens.

Questions whose golden documents required more than estimated 100,000 tokens to process 

were removed, as the generation LLM used (gpt-oss-120b) supports only up to 128,000 

tokens including overhead. Token counts have been approximated by counting the number of 

characters per document and dividing the resulting count by 4, since this method was a lot 

faster than counting the number of tokens in Python and precise enough for the experiment. 

This approximation is based on the observation that English text averages approximately 4 

characters per token for GPT-style tokenizers. For standard English prose, this method typically 

yields estimates within 10-20% of the actual token count. The approximation tends to slightly 

underestimate token counts since technical content, code snippets, or non-English text may 

have different character-to-token ratios. Given that the threshold was set at 100,000 tokens with 

a model context of 128,000 tokens, this margin of error was acceptable for the filtering purpose.

The removal primarily affected questions from the NarrativeQA dataset, removing 370 

questions. Questions from the NovelQA dataset were excluded before processing as its full-novel 

documents exceeded practical length limits.

In the original paper, documents which exceeded the model context were truncated from the 

end of the context. Truncating has the potential problem of removing important information 

when it is located in the end of the document. Therefore, and since this affected only 370 

questions of the total 11,758, it made more sense for the experiment in this thesis to remove 

the too long questions instead of truncating them.

Some datasets contained thousands of questions (2WikiMultihopQA, HotpotQA, MuSiQue, 

NarrativeQA, QuALTY, QASPER) while others had fewer than 100 (e.g., Coursera with only 
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54). Each dataset was capped at 800 questions to achieve better balance. Table 2 shows the full 

overview over the number of questions per dataset before and after filtering. The final dataset 

spans eleven sub-datasets with more even representation, allowing for systematic comparison 

across retrieval methods.

The filtering choices were deliberate and reflect the intended scope of this research. This thesis 

focuses on QA tasks where source documents are moderately sized (under 100k tokens), covering 

the vast majority of practical RAG applications such as technical documentation, knowledge 

bases, and business documents. Full-novel or book-length retrieval represents a distinct problem 

domain with different characteristics: it typically requires long-range narrative comprehension, 

character tracking across hundreds of pages, and synthesis of information spread across very 

large spans of text. This led to the exclusion of the NovelQA dataset for the experiment.

While dense retrieval methods may offer advantages in such long-context scenarios, this thesis 

explicitely scopes its investigation to the more common use case of retrieval over document 

collections of moderate length. This scoping decision means the findings should be interpreted 

as applicable to typical enterprise and knowledge-management RAG deployments rather than 

to specialized literary or long-form narrative applications.

Beyond scope considerations, the reductions were also pragmatic (compute/runtime) and 

methodological (avoid long-context failures that dominate variance without informing retrieval 

quality).

For validation purposes, a sample of 25 questions per dataset (275 total) was selected for 

manual review.

Dataset # of questions in the original 

dataset

# of questions after filtering

2WikiMultihopQA 884 800

Coursera 54 54

HotpotQA 1020 800

MultiDoc2Dial 158 158

MultiFieldQA 121 121

MuSiQue 1523 800

NarrativeQA 1709 800

Natural Questions 351 351

QASPER 2453 800

QuALTY 2523 800

TOEFL-QA 962 800

Total 11,758 6,284

Table 2: Number of questions per dataset before and after filtering.
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3.2 Model Selection

The gpt-oss-120b model was used, a state-of-the-art open-source model released by OpenAI, 

with a 128k token context window [55]. This choice was driven by reproducibility concerns and 

institutional access. The model is used to generate the actual answer to the question as well as 

for query rewriting in some retriever variants (see Section 3.3.2).

Since the original dataset was filtered using OpenAI’s GPT-4o, there may be questions that 

gpt-oss-120b can answer from world knowledge that GPT-4o could not, or vice versa. Further 

adding to this, gpt-oss-120b has its training cutoff in June 2024 [55], whereas GPT-4o was 

trained on data collected until October 2023 [56]. The None baseline (described in Section 3.3.2) 

helps to check for this. Re-running the original experiment used to create the original dataset 

would be needed to update it for gpt-oss-120b, however, this is out of scope for this thesis.

For vector embeddings, the Qwen3-4B embedding model was used, selected for its strong 

benchmark performance on the MTEB benchmark and leaderboard [57].

To rerank search results, the Jina Reranker v3 model was used, a lightweight, high-perfor

mance model based on Qwen3-0.6B and released in October 2025 [58]. The model uses a novel 

architecture which processes all documents and the query in the same context window, enabling 

the model to cross-reference different documents against each other and not just to the query. 

It achieves a BEIR performance of 61.85 nDCG@10 with only 0.6B parameters [58].

3.3 Experiment Architecture

User Query
(q)

Documents

(D)

Retriever

(R)

Search Engine

(S)

Generator

(G)

Answer

(a)

Search Strategy

Relevant 

Documents

(D𝑟)

Figure 2: Based on the RAG definition in Figure 1, this shows the version used in the experiment in this 

thesis, adding a search engine which the retriever uses along with a search strategy to retrieve documents.

Figure 2 shows the architecture of the RAG system used in the experiment of this thesis. The 

implemented architecture separates the concepts of retriever and search engine to enable a 

systematic comparison of different components. This allows to create a matrix of experiments, 

testing different query strategies against different search algorithms. Decoupling the retrieval 

and search step makes it possible to freely change the underlying search engine, making the 

design very suitable for this experiment.
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Compared to the architecture introduced in Section 2.2, this makes the actual search of the 

retrieval part a separate step.

3.3.1 Search Engines

Four primary search backends have been implemented:

1. SQLite Full-Text Search: Combines SQLite Full-Text Search with BM25 to rank the 

results [59]. Since many specialized full-text search databases on the market ultimately rely 

on BM25 or variants, this implementation in SQLite was treated as representative of this 

class of ranking algorithms. Other databases in this class are ParadeDB [60], Elasticsearch 

[61], SingleStore [62], and MongoDB [63].

2. pgVector: Uses PostgreSQL with the pgVector extension [64] to do semantic search using 

cosine distance search over embeddings generated by the qwen3-4B embedding model with 

2,560 embedding dimensions. Data is stored using the halfvec data type and an Hierarchical 

Navigable Small World (HNSW) index, resulting in approximate nearest neighbor search 

when querying the embeddings.

3. Typesense: For each search, it first computes the frequency of search query tokens, the edit 

distance, and proximity to other words in the document corpus. In a second step, it uses a 

tie-breaking algorithm to rank results [65].

4. Meilisearch: Similar to Typesense, this database computes relevancy by different factors. 

By default these factors are number of matched query terms, typo distance, proximity 

between words, user-supplied attribute and sort order, and the similarity of the matched 

words with the query words in ascending order of importance [66]. Finally, results are sorted 

with a bucket sort algorithm according to the score calculated in the first step [67]. For the 

experiment in this thesis, the default ranking order has been used.

Additionally, two baseline implementations were included:

1. None: Returns no documents, serving as a lower baseline to verify the model cannot 

answer questions from parametric memory alone. If the used LLM can still answer questions 

correctly, it indicates the question is part of its world knowledge, even if it wasn’t for GPT-4o.

2. Golden: Always returns only the correct document (the single context associated with each 

question, which for multi-document datasets contains all merged source texts), simulating a 

perfect retriever. This represents the upper baseline and achieves 100% document recall by 

definition.

Each search engine returns up to 10 documents per query by default, along with a relevance 

score to indicate how useful the result might be for the search term. In the case of SQLite 

Full-Text Search (FTS), this is the calculated BM25 score, for pgVector this is 1
1+ Cosine Distance , 

Typesense and Meilisearch return their own relevancy scores as returned from their ranking 

algorithms. For the None search engine, since no documents are returned no score is returned 

either. The Golden search engine always returns a score of 1.
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The score is passed along with the document to the LLM when it generates the response. 

This design choice was not ablated; future work could re-run a subset of configurations without 

score information in the generator context to investigate whether providing the scor across 

search engines influences the generation result. The full generation prompt can be found in 

Appendix A.1.

3.3.2 Retriever Types

Each search engine can be queried through four retriever architectures:

1. Passthrough: Forwards the query directly to the search engine without modification. When 

searching with the Embeddings Search engine, the Passthrough retriever is not used due to 

the nature of embeddings, which stores and returns only chunks of text. Therefore, Chunk 

and Passthrough in embeddings represent the same retriever types and only ChunkRetriever 

is used.

2. Search: Uses an LLM9 to rewrite the query into a more effective search query before passing 

it to the search engine. The full prompt used to rewrite the query is listed in Appendix A.2.1.

3. Keyword SearchRetriever: Uses an LLM9 to generate keywords from the question, then 

searches for each keyword separately. The full prompt used to rewrite the query is listed in 

Appendix A.2.2. Results are aggregated and filtered to the top-10 documents by search engine 

score. This approach aims to leverage the strengths of keyword-based search while using 

full-text search infrastructure. Note that the keyword generation prompt was designed with 

FTS in mind and was not specifically tuned for embedding-based retrieval, where natural 

language queries might perform better than isolated keywords.

4. ChunkRetriever: Similar to Passthrough, but this retriever returns document chunks 

rather than full documents. See Section 3.3.3 for details.

5. Fulldocs: This retriever is only used when using the Embeddings Search Engine. It returns 

the full documents whose chunks have been returned while searching for embeddings. Because 

all other search engines return full documents when the ChunkRetriever is not used, this 

retriever aims to control for cases when the LLM would generate a correct response simply 

because it had the full document available. The score of the retrieved full documents is the 

same as of the chunks that were originally retrieved.

All search-engine-specific index and ranking settings (tokenization, stopwords, stemming/

synonyms, BM25/HNSW parameters, and Typesense/Meilisearch ranking configuration) are 

documented in Appendix A.5.

3.3.3 Chunking Strategy

When building RAG systems, an important decision involves whether to return full documents 

or chunks. This is due to the “lost in the middle” phenomenon which suggests that models 

9In this experiment, the same model as for all other LLM tasks, gpt-oss-120b was used. It would also be 
possible to use a smaller, faster LLM or a fine-tuned variant for search term or keyword generation with 
potentially different results.
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may struggle with extremely long contexts. Other research on Long Context observed how 

LLMs struggle especially to use information that is in the middle of their context, opposed to 

information that is at the beginning or the end of the provided context [68]. This leads to the 

conclusion that Long Context is not a silver bullet to improving the answering capabilities in 

a RAG system.

Instead, providing smaller, more relevant chunks of documents may reduce context overhead 

and yield better results. To examine this hypothesis, the chunk retriever was added to only 

search and retrieve chunks of documents.

In the conducted experiment, these chunks were pre-generated and stored in each search 

engine for better performance, though runtime generation based on search matches is a potential 

alternative. Chunks were created with a maximum size of 512 characters and an overlap of 50 

characters between consecutive chunks. The chunking algorithm prefers sentence boundaries 

when splitting, avoiding cuts in the middle of sentences where possible. TODO das klingt nicht 

richtig Ultimately, the chosen implementation depends on the search engine used and whether 

the results provided by it have enough precision to create good chunks. During retrieval, this is 

similar to the Passthrough retriever with the key difference of returning chunks instead of full 

documents.

For each search engine, full document retrieval and chunk-based retrieval were tested. This 

allows to test whether providing focused, relevant chunks outperforms full document context.

For embedding-based search, the Passthrough and Chunk retrievers are functionally equiva

lent, the Passthrough retriever for embeddings was therefore excluded from comparative analysis 

to avoid redundant data points.

3.4 Reranking

Reranking is a refinement step which uses a specially trained reranking model to reorder the 

retrieved results, putting the most relevant on the top of the list. Section 2.5.5 explains reranking 

in more detail. In theory, reranking should be able to improve especially noisy FTS results for 

usage in RAG.

In this experiment, reranking is applied using Jina Reranker v3 after initial retrieval. This 

model, released in October 2025 and based on the Qwen3-0.6B LLM, represents current state-

of-the-art performance on the BEIR benchmark while remaining relatively lightweight [58].

Experiments were performed on all search configurations both with and without reranking on 

the full dataset to isolate its contribution. This allows evaluation of both base retrieval quality 

and the impact of reranking across different search engine choices.

In the architecture presented in Figure 2, reranking happens as part of the retriever.
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3.5 Evaluation

The evaluation method employed for the experiment combines manual review with automated 

assessment.

First, approximately 1,000 generated answers with different retrieval methods for the previ

ously selected 275 sample questions were evaluated manually as correct, incorrect or partially 

correct. This provides ground truth for automated validation.

Then, a model-as-judge approach was developed where an LLM10 receives the question, correct 

answer, and generated answer, then classifies the response as correct, incorrect or partially 

correct.

Multiple-choice datasets (QuALITY, TOEFL-QA, Coursera) are evaluated identically to 

open-ended questions. The generation model outputs free-form text responses which may 

include option letters, option text, paraphrases, or combinations thereof (e.g., “B. she wore 

free-flowing costumes and D. she danced without shoes” or “The class was canceled because 

there weren’t enough students enrolled (Option A)”). The expected answers for multiple-choice 

questions are stored as option letters (e.g., “B” or “BD” for multi-answer questions). The 

judge performs semantic comparison rather than exact string matching, determining whether 

the generated response conveys the same meaning as the expected answer. For multi-answer 

multiple-choice questions, the partially correct category captures cases where the model iden

tifies some but not all correct options.

The model-as-judge approach was first introduced in 2023 by Zheng et al. [69]. Originally 

used to rate answers by different chat LLM, it matched the results of human annotators by 80%.

To run and optimize the prompt, the dspy Python library has been used. A MIPROv2 optimizer 

was employed to improve the prompt, an optimizer designed to improve multi-stage Language 

Model Programs by refining both free-form instructions and few-shot demonstrations at the 

same time to maximize a final task metric. In the library, many prompt variants are generated 

which are then searched using a Bayesian surrogate model to approximate the optimal prompt 

and search through proposed prompt combinations [70]. Results are validated using validation 

data that was collected manually.

Additionally, dspy simplifies using and managing the prompts in the code, streamlining the 

implementation.

The full optimized evaluation prompt can be found in Appendix A.3.

After generating training data manually and testing various models and prompts, 92% accu

racy was achieved using the automated approach. This 92% figure represents the optimization 

metric calculated during prompt tuning on the manually labeled training data used by dspy.

To independently verify the evaluation quality, 216 answers generated with the golden 

retriever that also had manually rated labels available from the original sample data collection 

10Here, gpt-oss-120b has been used as well.
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were compared. Answers where the model replied that it did not know the response were 

excluded11. For each question, the binary correctness judgments were compared between manual 

and automatic methods:

Agreement Rate = ( Number of Matching Ratings
Total Number of Paired Ratings) × 100%

This verification yielded an 84.7% agreement rate with a Cohen’s Kappa of 0.618, indicating 

“substantial agreement” according to the interpretation scale presented by Landis and Koch 

[71]. The difference between training accuracy (92%) and validation agreement (84.7%) is 

expected: the optimization metric measures performance on the training data used to tune the 

prompt, while the agreement rate reflects real-world performance on previously unseen answers 

evaluated after the experiment.

While fine-tuning could potentially improve this further, the achieved reliability was deter

mined to be sufficient for large-scale evaluation in the context of this thesis. Cohen’s Kappa 

accounts for agreement occurring by chance, making it a more robust measure than simple 

percent agreement, and a value of 0.618 is considered adequate for the experiment in this 

thesis where the goal is to identify relative performance differences rather than precise absolute 

measurements.

3.6 Experimental Infrastructure

All experimental runs, questions, and model answers are logged in a central database for 

analysis. The system is built for robustness, allowing multiple runs to be started without 

overwriting previous data.

The question-answering prompt used in the generator follows best practices but required 

tuning to prevent excessively long responses. It was empirically observed that when the model 

lacks relevant documents, it tends to generate really verbose but incorrect answers, particularly 

when only irrelevant documents are retrieved. However, when no documents are found, the 

model reliably responds with “I don’t know” as instructed. This matches current research 

findings showing that LLMs perform worse when the context contains irrelevant information 

than when the context is empty [68].

3.7 Key Considerations and Limitations

The used dataset was originally filtered using GPT-4o, while this experiment uses gpt-oss-120b. 

Differences in model capabilities and knowledge cutoffs may affect which questions genuinely 

require retrieval.

Due to gpt-oss-120b’s 128k token context window, some documents exceed practical limits. 

The dataset was filtered by token size to address this, but context window limitations remain 

relevant even for newer long-context models due to performance degradation and the “needle 

in the haystack” problem.

11Cases where the model replied with “I do not know the answer to your question.” as instructed in the 
system prompt.
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All experiments were conducted on a single model with one embedding model. Results may 

not generalize to other model families.

In total, 32 configurations were evaluated: 4 search engines (SQLite FTS, pgVector, Type

sense, Meilisearch) × 4 retrievers (Passthrough, Search, Keyword, Chunk) × 2 reranking options 

(with and without), minus the 2 redundant embedding Passthrough configurations, plus the 

2 full document retreival configurations, plus 2 baselines (Golden and None). No prompts 

or hyperparameters were tuned after inspecting experimental results. The prompts for query 

rewriting and keyword generation were designed a priori based on task requirements, and 

search engine parameters (e.g., returning top-10 results) were fixed before experiments began. 

Hyperparameter optimization was outside the scope of this thesis, which focused on comparing 

retrieval strategies under consistent conditions rather than optimizing individual configurations.

4 Results
This chapter presents the experimental results obtained from the evaluation outlined in the 

previous section. These results are used to answer the research question of whether full-text 

search can be a viable alternative to embedding-based search in RAG systems. The findings 

are categorized into results across all datasets in Section 4.1, document recall analysis in 

Section 4.1.3, timing analysis in Section 4.2, and the best configurations per dataset Section 4.3 

and Section 4.4.

4.1 Overall Performance Across Search Engines

This section presents the broad results of the experiment. It is expected that using external 

data via RAG contributes significantly to the results of the QA tasks.

Table 3 presents the comprehensive results across all search engine configurations. The search 

engine, retriever, and reranking columns describe the retrieval pipeline components: the search 

engine (see Section 3.3.1), the retriever type (see Section 3.3.2), and whether reranking was 

applied (see Section 3.4). Answer quality is captured through four percentage-based metrics: the 

percentage of correctly retrieved answer documents (Doc Recall), the percentage of questions 

answered correctly, partially correct, and the combined correct plus partial rate, all evaluated 

using the model-as-judge approach described in Section 3.5. Performance characteristics are 

reported through average retrieval time, average completion time, and average total response 

time, all measured in seconds and computed across the full set of evaluated queries.
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Golden Passthrough No 100.00% 69.40% 5.52% 74.91% 0.0097 1.8689 1.8787

None Passthrough No 0.00% 7.65% 1.40% 9.05% 0.0000 0.9521 0.9521

No 40.07% 24.59% 3.51% 28.10% 0.2264 1.2641 1.4905
Chunk

Yes 40.12% 24.06% 3.41% 27.47% 0.3291 1.6924 2.0215

No 33.24% 28.58% 3.06% 31.64% 0.4957 9.3811 9.8772
Fulldocs

Yes 37.65% 31.19% 3.39% 34.58% 26.3811 8.3206 34.7021

No 6.71% 8.06% 2.50% 10.56% 1.4247 1.0384 2.4631
Keyword

Yes 6.54% 7.15% 2.16% 9.31% 2.4345 1.2453 3.6798

No 27.83% 17.98% 2.61% 20.59% 0.2364 1.1580 1.3944

Embeddings

Search
Yes 27.59% 16.96% 2.78% 19.75% 0.3448 1.1391 1.4840

No 0.52% 7.70% 1.48% 9.18% 0.0044 0.9581 0.9625
Chunk

Yes 0.53% 8.10% 1.38% 9.48% 0.0539 1.3200 1.3739

No 8.29% 14.82% 2.52% 17.34% 2.0209 8.5963 10.6173
Keyword

Yes 10.50% 16.12% 2.72% 18.84% 6.9150 14.0422 20.9572

No 20.80% 22.46% 2.71% 25.17% 0.0867 3.8680 3.9548
Passthrough

Yes 27.64% 25.27% 2.93% 28.20% 1.7182 4.5196 6.2381

No 21.21% 22.77% 2.46% 25.23% 1.4125 3.9697 5.3822

Full-Text Search

Search
Yes 25.65% 24.52% 2.50% 27.02% 3.1187 4.2398 7.3585

No 12.53% 4.46% 1.10% 5.56% 0.0095 1.0940 1.1036
Chunk

Yes 12.56% 4.71% 1.24% 5.95% 0.1013 1.7684 1.8697

No 56.25% 39.18% 4.46% 43.64% 0.2804 9.7985 10.0789
Keyword

Yes 54.69% 40.44% 4.47% 44.91% 4.1565 22.8093 26.9658

No 36.63% 29.30% 3.17% 32.47% 0.1901 9.4851 9.6753
Passthrough

Yes 36.19% 29.66% 3.53% 33.20% 4.9603 9.7008 14.6613

No 46.64% 34.18% 3.75% 37.94% 0.1215 8.0988 8.2203

Meilisearch

Search
Yes 47.45% 36.97% 3.42% 40.39% 3.0814 8.3723 11.4537

No 11.96% 3.43% 0.80% 4.23% 0.2070 0.9512 1.1583
Chunk

Yes 11.90% 3.64% 0.62% 4.26% 0.4930 1.3147 1.8078

No 46.21% 37.32% 3.69% 41.01% 1.2029 8.4977 9.7006
Keyword

Yes 46.16% 37.29% 3.77% 41.06% 7.3586 28.9181 36.2768

No 32.84% 29.60% 3.23% 32.83% 0.7932 4.6709 5.4644
Passthrough

Yes 33.78% 30.49% 3.06% 33.55% 5.0499 4.8642 9.9146

No 39.35% 34.29% 3.18% 37.48% 0.3036 4.1061 4.4098

Typesense

Search
Yes 39.26% 33.91% 2.99% 36.90% 2.6623 4.4194 7.0817

Table 3: Performance per search engine in all run configurations. Values marked in dark green are the 

best overall, values in light green are the best per search engine, values marked dark red are the worst 

overall, values in light red are the worst per search engine - for configurations except Golden and None. 

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time, 

average completion time, and average response time, lower is better.
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2WikiMultihopQA 35.32% 28.42% 0.86% 29.28% 2.2755 6.0229 8.2985

Coursera 28.14% 20.83% 40.95% 61.78% 1.7595 4.6152 6.3747

HotpotQA 44.58% 33.21% 0.91% 34.12% 1.8512 7.1827 9.0340

MultiDoc2Dial 24.02% 14.19% 6.61% 20.80% 2.8846 4.0879 6.9727

MultiFieldQA 35.63% 29.61% 3.19% 32.81% 1.9170 5.1421 7.0591

MuSiQue 33.02% 24.55% 1.81% 26.36% 2.0748 7.8541 9.9290

NarrativeQA 25.66% 9.60% 1.57% 11.17% 2.7864 5.0024 7.7889

Naturalquestion 47.78% 29.55% 4.08% 33.63% 1.7119 6.4107 8.1227

QASPER 17.94% 16.12% 6.55% 22.67% 1.4757 5.1588 6.6346

QuALTY 21.53% 20.75% 0.25% 21.01% 2.5239 4.0926 6.6166

TOEFL-QA 24.64% 32.23% 4.01% 36.24% 2.4068 3.7990 6.2058

Table 4: Summary per dataset across all run configurations. Doc Recall shows the average percentage 

of questions where the gold document was retrieved. Values marked in dark green are the best overall, 

values in light green are the 2nd best overall, values marked dark red are the worst overall, values in 

light red are the 2nd worst overall. For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is 

better, for average retrieval time, average completion time, and average response time, lower is better.

The baseline configurations established the performance bounds for the evaluation: The Golden 

retriever, which returned only the correct source document, achieved 69.40% correctness, while 

the None retriever, which did not add any documents to the context, achieved 7.65% correctness. 

This indicates that 7.65% of questions can be answered correctly by gpt-oss-120b based solely 

on its parametric knowledge. This is more than what was previously filtered questions by GPT-4o 

when curating the original dataset – the questions filtered in the dataset could not be answered 

at all by GPT-4o. These general results across all different configurations provide a first insight 

into the overall trends of the experiment and are used to spot any outliers.

Similarly, Table 4 shows the results grouped by dataset across all retrieval configurations.

Meilisearch with keyword search and reranking achieved the highest performance among 

the tested retrieval methods at 40.44% correctness. The difference to without reranking was 

minimal, only 1.26% lower at 39.18% correctness. Typesense demonstrated similar performance 

characteristics as Meilisearch, including only a marginal difference between with or without 

reranking for keyword search – achieving 37.29% correctness with reranking and 37.32% without 

reranking.
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Full-text search methods via SQLite and BM25 showed varied performance depending on the 

retrieval strategy. Simple direct search via the passthrough retriever yielded 25.27% correctness 

with reranking, on par with search in embeddings. With search query rewriting, performance 

slightly dropped to 24.52% correctness with reranking and 22.77% without reranking. Key

word-based full-text search achieved 16.12% correctness with reranking and 14.82% without 

reranking. These results suggest that the search query generation strategy performs comparably 

to direct passthrough search, likely due to the nature of full-text search mechanisms. Reranking 

has a small effect (roughly 2%), but the difference is modest.

Chunk-based embeddings achieved 24.06% correctness with reranking and 24.59% without 

reranking. When passing the full document of the retrieved chunks to the LLM, a slighly higher 

28.58% correctness was observed. With reranking, these results were improved by almost 7% 

to 31.19%, representing the best results for the Embeddings Search Engine.

Keyword-based embedding search performed worst for the embedding search engine at 7.15% 

correctness with reranking, falling slightly below the baseline of 7.65%. Without reranking, 

performance is slightly better at 8.06%. This suggests that incorrect source retrieval actively 

degraded model performance.

Chunk-based retrieval with Meilisearch and Typesense performed notably poorly. Meilisearch 

chunk retrieval achieved only 4.71% correctness with reranking and 4.46% without reranking, 

Typesense chunk retrieval achieved 3.64% correctness with reranking and 3.43% without 

reranking. Both fall below the None baseline. These results indicate that the wrong chunks 

were retrieved, introducing noise that led the model to very wrong answers and degraded LLM 

performance below its baseline parametric knowledge.

Despite poor chunk performance, direct search with Meilisearch achieved respectable results 

at 29.66% correctness with reranking and 29.30% without reranking, on par with full document 

embeddings search and better than standard full-text search. When search queries were gener

ated, Meilisearch achieved an even better score of 36.97% correctness with reranking and 34.18% 

without reranking.

4.1.1 Best Embedding vs. Full-Text Search

To analyse whether a systematic performance difference exists between embedding-based and 

full-text search approaches, the best-performing configuration from each category was compared 

across all evaluated datasets. Table 5 presents the results of the best full-text search approach 

(one of SQLite FTS, Meilisearch, or Typesense) against the best embedding-based approach 

for each dataset.

The results reveal a consistent and substantial performance gap favoring full-text search 

methods. This difference becomes especially clear when examining only the % Correct metric, 

as illustrated in Figure 3. Full-text approaches outperform embedding-based retrieval on all 

datasets except TOEFL-QA, and tie on Coursera with a correctness of 35.19%. On TOEFL-

QA, embeddings achieve 65% correct versus 46.62% for full-text search (an 18.38% advantage).
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Only on the QuALITY dataset passing chunks from embeddings results performed better, in 

all other cases passing the full document to the LLM yielded better results.

The most substantial gaps are observed on multi-hop reasoning datasets. 2WikiMultiHopQA 

exhibits the largest disparity (62.59% vs. 19.38%, a 43.21% difference), followed by Multi

FieldQA (73.55% vs. 35.54%, a 38.01% difference) and HotpotQA (64.50% vs. 31.87%, a 32.63% 

difference). For 2WikiMultiHopQA and MultiFieldQA, keyword-based matching appears to 

provide more reliable retrieval than semantic similarity.

Mid-range gaps are observed on MultiDoc2Dial (37.97% vs. 17.09%, a 20.88% difference) and 

QuALTY (44.38% vs. 31.13%, a 13.25% difference). Smaller gaps appear on MuSiQue (40.50% 

vs. 34.62%, a 5.88% difference), Naturalquestion (51.85% vs. 48.15%, a 3.70% difference), 

QASPER (26.62% vs. 22.00%, a 4.62% difference), and NarrativeQA (18.41% vs. 13.75%, a 

4.66% difference), while Coursera is a tie at 35.19%.

Across all datasets, full-text search approaches outperform embeddings by an average of 

13.50%.
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Embeddings Fulldocs No 18.62% 19.38% 1.38% 20.75% 0.5817 8.1221 8.7043
2WikiMultihopQA

Typesense Keyword No 82.67% 62.59% 1.50% 64.09% 0.8358 8.7734 9.6093

Embeddings Fulldocs No 48.15% 35.19% 38.89% 74.07% 0.4420 8.3087 8.7509
Coursera

Typesense Keyword Yes 50.00% 35.19% 42.59% 77.78% 6.1540 22.3476 28.5016

Embeddings Fulldocs No 33.88% 31.87% 0.88% 32.75% 0.4864 12.3024 12.7892
HotpotQA

Typesense Search Yes 76.50% 64.50% 1.50% 66.00% 1.1555 4.2944 5.4500

Embeddings Fulldocs Yes 22.15% 17.09% 5.70% 22.78% 31.4385 3.9699 35.4089
MultiDoc2Dial

Meilisearch Keyword Yes 65.82% 37.97% 12.66% 50.63% 3.8125 24.7262 28.5387

Embeddings Fulldocs Yes 39.67% 35.54% 1.65% 37.19% 22.3970 6.8473 29.2445
MultiFieldQA

Meilisearch Keyword No 82.64% 73.55% 4.96% 78.51% 0.2541 9.3839 9.6380

Embeddings Fulldocs Yes 44.75% 34.62% 2.12% 36.75% 25.0087 13.5106 38.5196
MuSiQue

Meilisearch Search Yes 50.75% 40.50% 1.62% 42.12% 2.7113 11.6012 14.3124

Embeddings Fulldocs Yes 27.50% 13.75% 1.12% 14.88% 38.1082 6.5069 44.6156
NarrativeQA

Meilisearch Passthrough No 40.67% 18.41% 2.11% 20.52% 0.2267 8.4513 8.6781

Embeddings Fulldocs Yes 70.09% 48.15% 5.70% 53.85% 10.0871 11.9983 22.0855
Naturalquestion

Meilisearch Keyword Yes 84.05% 51.85% 5.70% 57.55% 3.9187 13.7215 17.6403

Embeddings Fulldocs Yes 24.38% 22.00% 9.00% 31.00% 13.4800 8.7037 22.1838
QASPER

Meilisearch Keyword Yes 33.38% 26.62% 10.25% 36.88% 2.9298 8.4380 11.3678

Embeddings Chunk No 34.44% 31.13% 0.12% 31.25% 0.2256 1.2094 1.4350
QuALTY

Meilisearch Keyword Yes 53.62% 44.38% 0.12% 44.50% 4.0963 11.4563 15.5526

Embeddings Fulldocs Yes 71.00% 65.00% 5.75% 70.75% 22.8609 5.1679 28.0291
TOEFL-QA

Meilisearch Keyword Yes 50.88% 46.62% 6.38% 53.00% 4.4158 13.4178 17.8336

Table 5: Results for the best Full-Text Search configuration (One of BM25-based SQLite Full-Text 

Search, Meilisearch or Typesense) vs. the best embedding-based configuration. Doc Recall shows the 

percentage of questions where the gold document was retrieved. Values marked in dark green are the 

best overall, values in light green are the best per search engine, values marked dark red are the worst 

overall, values in light red are the worst per search engine - for configurations except Golden and None. 

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time, 

average completion time, and average response time, lower is better.

33



Results

Best Embeddings approach
Best Full-Text Search approach

2W
ik

iM
u
lt

ih
op

Q
A

C
ou

rs
er

a

H
ot

p
ot

Q
A

M
u
lt

iD
o
c2

D
ia

l

M
u
lt

iF
ie

ld
Q

A

M
u
S
iQ

u
e

N
ar

ra
ti

ve
Q

A

N
at

u
ra

lq
u
es

ti
on

Q
A

S
P

E
R

Q
u
A

L
T

Y

T
O

E
F
L
-Q

A

Dataset

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

%
 C

or
re

ct

19
.3

8%

35
.1

9%

31
.8

7%

17
.0

9%

35
.5

4%

34
.6

2%

13
.7

5%

48
.1

5%

22
%

31
.1

3%

65
%

62
.5

9%

35
.1

9%

64
.5

%

37
.9

7%

73
.5

5%

40
.5

%

18
.4

1%

51
.8

5%

26
.6

2%

44
.3

8%

46
.6

2%

Figure 3: The best embedding-based and best Full-Text search approaches with their % Correct, as 

shown in Table 5.

4.1.2 Statistical Significance

To verify that the observed performance differences are not due to chance, statistical tests were 

performed on the key comparison between full-text search and embedding-based retrieval.

The best full-text search configuration (Meilisearch with keyword generation and reranking) 

achieved 40.44% accuracy (95% CI: 39.23%–41.65%, n=6,284), compared to 31.19% (95% CI: 

30.06%–32.35%, n=6,284) for the best embedding-based configuration (full document retrieval 

with reranking). The confidence intervals were computed using the Wilson score method, which 

provides more accurate coverage for proportions than the normal approximation. The non-

overlapping confidence intervals indicate the difference is statistically meaningful.

Since both methods answered the same set of questions, McNemar’s test for paired data 

was performed. McNemar’s test is designed for paired nominal data and specifically examines 

whether the disagreements between methods are systematic. The test focuses on questions where 

the two methods disagreed and determines whether one method systematically outperforms the 

other. The result (𝜒2 = 163.2, p < 0.001) confirms that full-text search systematically outper

forms embeddings: FTS correctly answered 1,321 questions that embeddings missed, while 
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embeddings only succeeded on 740 questions where FTS failed, representing a net advantage 

of 581 questions (9.2% of the test set).

These results demonstrate that the performance advantage of full-text search over embedding-

based retrieval is not attributable to random variation but represents a genuine and substantial 

difference in retrieval effectiveness.

4.1.3 Document Recall

To separate retrieval failure from generation failure, document recall was measured for each 

retrieval configuration, shown in the Doc Recall column in all results tables (Table 4, Table 3, 

Table 6). Document recall measures if the source document containing the answer was retrieved, 

regardless of whether the LLM generated a correct answer from it. It can differ between config

urations with and without reranking, even when using the same search engine and retriever, 

see Section 5.6 for an explanation.

The Golden retriever achieves 100% recall by definition, while the None retriever achieves 

0% as expected. Looking at the results per retrieval configuration in Table 3, even the Golden 

retriever only achieves 69.40% answer correctness.

Among the evaluated retrieval methods, Meilisearch with keyword generation achieved the 

highest document recall at 56.25%, followed by Typesense with keyword generation achieved 

46.21% document recall. Embedding-based retrieval peaked at 40.12% document recall with 

chunk retrieval, while only 37.65% when retrieving full documents, both with reranking. Full-

text search with chunk retrieval showed the lowest recall at just 0.52%.

Figure 4 visualizes the relationship between document recall and answer correctness across 

retrieval configurations. The scatter plot shows a positive correlation: configurations with higher 

document recall tend to achieve higher correctness rates. The strength of this relationship varies 

by search engine type: embedding-based configurations at approximately 40% recall achieve 

17-25% correctness, while full-text search engines show higher correctness rates at comparable 

recall levels.

For the case where embedding search was used but the full document was passed to the LLM, 

the results appear to be in line with FTS methods, even though they achieved lower % correct.
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Figure 4: The relationship between document recall and % correct. Each point in the diagram represents 

a search engine configuration, colored by search engine type and distinguished by shape. Golden and 

None baselines are excluded.

4.2 Timing Analysis

Analyzing the response times of different configurations was done to see whether the retrieval 

method used has an effect on response times. If one retrieval method would turn out to be 

excellent in retrieval quality but takes a really long time to answer queries, that would render it 

unusable for real-time chat applications – even though the qualitative results might be better. 

Or, viewed from another angle, if the retrieval quality is high but response times are poor, 

further research could be conducted to see if the response time can be improved.

It is expected that adding different RAG mechanisms adds latency, especially when combined 

with reranking. Latency with the None retriever should be almost zero, with the Golden retriever 

it should be near-zero.

The timing measurements reported in this section are descriptive observations. The exper

iment relied on a university-hosted GPU instance where other users may have accessed the same 

resources simultaneously, introducing variability in response times. Therefore, timing results 

should be interpreted as indicative patterns rather than precise performance benchmarks.

Timing results across search engines (as shown in Table 3) revealed consistent patterns across 

configurations. Chunk-based retrieval consistently demonstrated the fastest retrieval times, 

likely because less data needed to be retrieved and transferred from the database. Full-text 

search with chunks showed the fastest overall performance.

The best-performing configurations when looking at % Correct, Meilisearch and Typesense 

with keyword retrieval, exhibited notably longer total response times compared to other 
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methods in the observed data. All of this can be attributed to the longer completion time when 

using these search engines.

In the observed measurements, Meilisearch keyword retrieval showed average total response 

times of 26.97 seconds with reranking and 10.07 seconds without reranking. Of this, 22.81 

seconds have been spent in generation with and 9.78 seconds without reranking. Typesense 

showed an average of 36.28 seconds for keyword search with reranking and 9.70 seconds without. 

Similarly to Meilisearch, 28.92 seconds of the 36.28 seconds have been spent on average on the 

generation with reranking, vs. 8.50 seconds without reranking.

This extended generation time suggests that more documents were retrieved and processed 

by the language model. Figure 5 shows the the generation time compared to the number of 

retrieved documents for Typesense with keyword generation reranked as configuration with 

the longest completion times. The diagram shows an upward trend of the median response 

time (indicated by the line in the box charts), suggesting an association between number of 

documents retrieved and response time, which is consistent with this hypothesis.

To control for the potential confounding effect of different document return counts across 

configurations, Figure 6 presents the Pearson correlation between average content length and 

average completion time. Content length serves as a proxy for document return volume, since 

configurations returning more documents would be expected to have higher total content length.
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Figure 5: The number of retrieved documents vs. the completion time in seconds for the Typesense 

configuration with keyword search and reranking.
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Figure 6: Pearson correlation between average content length and average completion time per retrieval 

configuration. Content length is defined as the sum of character counts across all documents used to 

answer a question. Chunk-based retrieval configurations, including embedding-based approaches, are 

excluded because character counts reflect full document lengths rather than the subset of text contained 

in retrieved chunks.

The analysis in Figure 6 reveals that document return volume does not systematically explain 

performance differences between retrieval methods. No clear correlation between average content 

length and completion time is visible for Typesense or Meilisearch configurations. While the 

Typesense keyword search with reranking configuration shows a high correlation of 0.8070, 

this does not explain why this configuration’s completion times are approximately three times 

higher than other configurations with comparable or greater retrieved content. The causal 

mechanism for these timing differences remains unclear; infrastructure variability from shared 

GPU resources may be a contributing factor. This finding suggests that the observed accuracy 
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differences between full-text search and embedding-based retrieval are not confounded by 

systematic differences in document return counts.

Golden and None retrievers expectedly demonstrated the fastest performance since they spent 

practically no time in retrieval at all and only need to return the correct or no document.

Looking at observed retrieval times per dataset, the results varied considerably across datasets 

and configurations. In the measurements, NaturalQuestion exhibited the longest average 

response time at 40 seconds with the Typesense keyword search and reranking. The observed 

time with Meilisearch for the same dataset resulted in observed averages of 17.6 and 8.5 seconds 

with and without reranking.

MultiFieldQA, which achieved the highest overall score, had an observed average response 

time of 9.6 seconds for the best-performing configuration (Meilisearch with keyword and no 

reranking). With reranking, the otherwise same configuration returned an average of 32 seconds.

4.3 Performance by Dataset

Examining query performance on a per-dataset basis helps identify whether some document 

collections yield better results than others, irrespective of the retrieval method used. It is 

expected that all datasets will show improvement with retrieval compared to the None baseline, 

though some may benefit more than others. The results might show that some datasets work 

better with embeddings and some work better with full-text search.

Table 4 summarizes performance across datasets, revealing substantial performance variation 

across datasets. Because the results represent aggregates across all configurations, the results are 

lower than the best results from Table 3. HotpotQA achieved the highest correctness at 33.21%, 

while NarrativeQA achieved the lowest at 9.60%. This represents a substantial performance gap 

across different datasets.

The performance distribution across datasets suggests that certain question types or docu

ment structures are more amenable to retrieval-augmented generation than others. It could also 

mean that the quality of documents in the dataset is higher for some than others.

4.4 Top 3 Configurations by Dataset

Going deeper into the results from Section 4.3, the top 3 configurations by dataset will 

reveal whether full-text search works better than embedding-based search in general or only 

for a certain type of questions. Since the overall results turned out to favor full-text search 

(Meilisearch with keyword generation), it is expected that this pattern continues when investi

gating the top 3 configuration by dataset.

Because it would be impractical to look at all results across all datasets at once, only the top 

3 have been selected. Individual results for all datasets and all configurations can be found in 

Appendix A.4.
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- Golden Passthrough No 100.00% 73.82% 1.87% 75.69% 0.0078 1.8018 1.8097

- None Passthrough No 0.00% 8.73% 0.62% 9.35% 0.0000 0.9279 0.9279

1 Typesense Keyword No 82.67% 62.59% 1.50% 64.09% 0.8358 8.7734 9.6093

2 Search Yes 78.38% 58.88% 1.25% 60.12% 2.5100 8.7439 11.2540

2WikiMultihopQA

Meilisearch
3 Search No 79.18% 58.48% 1.12% 59.60% 0.0979 8.6500 8.7479

- Golden Passthrough No 100.00% 37.04% 42.59% 79.63% 0.0048 1.5833 1.5880

- None Passthrough No 0.00% 20.37% 46.30% 66.67% 0.0000 1.1910 1.1910

1 Typesense Keyword Yes 50.00% 35.19% 42.59% 77.78% 6.1540 22.3476 28.5016

2 Embeddings Fulldocs No 48.15% 35.19% 38.89% 74.07% 0.4420 8.3087 8.7509

Coursera

3 Meilisearch Keyword Yes 72.22% 33.33% 42.59% 75.93% 4.0349 23.6872 27.7221

- Golden Passthrough No 100.00% 85.38% 1.36% 86.74% 0.0086 1.9872 1.9959

- None Passthrough No 0.00% 9.79% 0.87% 10.66% 0.0000 1.3115 1.3115

1 Search Yes 76.50% 64.50% 1.50% 66.00% 1.1555 4.2944 5.4500

2 Search No 77.20% 62.83% 0.87% 63.69% 0.1213 4.1882 4.3095

HotpotQA

Typesense

3 Passthrough Yes 73.00% 62.38% 0.88% 63.25% 2.0931 4.7807 6.8739

- Golden Passthrough No 100.00% 53.80% 13.92% 67.72% 0.0028 1.5098 1.5127

- None Passthrough No 0.00% 1.90% 1.90% 3.80% 0.0000 0.8614 0.8614

1 Keyword Yes 65.82% 37.97% 12.66% 50.63% 3.8125 24.7262 28.5387
Meilisearch

2 Keyword No 64.56% 34.81% 14.56% 49.37% 0.2984 8.2198 8.5182

MultiDoc2Dial

3 Typesense Keyword Yes 51.90% 33.54% 12.66% 46.20% 10.5234 16.6333 27.1570

- Golden Passthrough No 100.00% 85.12% 9.09% 94.21% 0.0050 1.6034 1.6085

- None Passthrough No 0.00% 1.65% 0.00% 1.65% 0.0000 0.7428 0.7428

1 Keyword No 82.64% 73.55% 4.96% 78.51% 0.2541 9.3839 9.6380
Meilisearch

2 Keyword Yes 83.47% 66.12% 7.44% 73.55% 3.4251 28.6092 32.0344

MultiFieldQA

3 Typesense Keyword Yes 66.94% 55.37% 5.79% 61.16% 6.4518 25.2383 31.6901

- Golden Passthrough No 100.00% 58.08% 2.10% 60.17% 0.0099 2.7316 2.7416

- None Passthrough No 0.00% 8.38% 1.23% 9.62% 0.0000 1.3640 1.3640

1 Meilisearch Search Yes 50.75% 40.50% 1.62% 42.12% 2.7113 11.6012 14.3124

2 Search Yes 44.75% 40.00% 1.75% 41.75% 2.0991 7.1443 9.2435

MuSiQue

Typesense
3 Search No 45.75% 38.35% 2.10% 40.44% 0.2193 6.7612 6.9805

- Golden Passthrough No 100.00% 43.23% 5.34% 48.57% 0.0315 2.4032 2.4347

- None Passthrough No 0.00% 1.36% 0.00% 1.36% 0.0000 0.7501 0.7501

1 Passthrough No 40.67% 18.41% 2.11% 20.52% 0.2267 8.4513 8.6781

2 Passthrough Yes 44.12% 17.75% 3.75% 21.50% 5.9395 9.4647 15.4044

NarrativeQA

Meilisearch

3 Keyword Yes 42.62% 17.75% 2.62% 20.38% 4.8547 17.1963 22.0510

- Golden Passthrough No 100.00% 66.38% 3.99% 70.37% 0.0120 1.8048 1.8168

- None Passthrough No 0.00% 13.68% 3.70% 17.38% 0.0000 0.9976 0.9976

1 Keyword Yes 84.05% 51.85% 5.70% 57.55% 3.9187 13.7215 17.6403Meilisearch

Naturalquestion
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2 Keyword No 82.05% 49.00% 6.27% 55.27% 0.2783 8.3035 8.5819

3 Embeddings Fulldocs Yes 70.09% 48.15% 5.70% 53.85% 10.0871 11.9983 22.0855

- Golden Passthrough No 100.00% 68.90% 15.85% 84.76% 0.0044 1.5973 1.6017

- None Passthrough No 0.00% 0.24% 0.12% 0.37% 0.0000 0.7120 0.7120

1 Keyword Yes 33.38% 26.62% 10.25% 36.88% 2.9298 8.4380 11.3678
Meilisearch

2 Keyword No 34.02% 25.85% 10.00% 35.85% 0.1571 7.4543 7.6114

QASPER

3 Typesense Keyword Yes 23.88% 24.75% 7.50% 32.25% 3.7813 20.8751 24.6565

- Golden Passthrough No 100.00% 71.81% 0.74% 72.55% 0.0060 1.6074 1.6135

- None Passthrough No 0.00% 4.29% 0.00% 4.29% 0.0000 0.7746 0.7746

1 Keyword Yes 53.62% 44.38% 0.12% 44.50% 4.0963 11.4563 15.5526

2 Keyword No 50.98% 40.20% 0.37% 40.56% 0.3843 9.1129 9.4972

QuALTY

Meilisearch

3 Search Yes 37.38% 33.62% 0.50% 34.12% 3.3260 6.2848 9.6108

- Golden Passthrough No 100.00% 88.89% 7.24% 96.13% 0.0011 1.1093 1.1105

- None Passthrough No 0.00% 19.60% 3.12% 22.72% 0.0000 0.8422 0.8422

1 Fulldocs Yes 71.00% 65.00% 5.75% 70.75% 22.8609 5.1679 28.0291

2 Chunk No 71.16% 63.05% 5.87% 68.91% 0.2161 1.2062 1.4224

TOEFL-QA

Embeddings

3 Chunk Yes 71.12% 62.50% 6.12% 68.62% 0.2963 1.5969 1.8932

Table 6: The top 3 Search engines with the highest % Correct grouped per dataset, including the Golden 

and None results for reference. Doc Recall shows the percentage of questions where the gold document 

was retrieved. Values marked in dark green are the best overall, values in light green are the 2nd best 

overall, values marked dark red are the worst overall, values in light red are the 2nd worst overall. For Doc 

Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time, average 

completion time, and average response time, lower is better. Marked values do not include the Golden 

and None results.

Table 6 presents the three best-performing search engine configurations for each dataset, addi

tionally the Golden and None baselines for reference. The results show variation in performance 

across different datasets and configurations.

It is directly clear that Typesense and Meilisearch consistently rank among the top performers 

across most datasets. This is in line with the results from Table 3.

MultiFieldQA delivered the best overall result across all datasets. Meilisearch with keyword 

search and without reranking achieved 73.55% correct answers, approaching the Golden baseline 

of 85.12% for this dataset. It achieved 66.12% correct answers with keyword search and 

reranking as the second best, showing a gap of 7.43% to the configuration without reranking. 

This suggests that reranking may actually harm performance in certain contexts.
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Typesense with keyword search and reranking reached 55.37% correct answers as the third-

best configuration for this dataset.

NarrativeQA resulted in the worst overall score for a dataset with only 18.41% correctness 

with Meilisearch direct search without reranking. This indicates that NarrativeQA represents 

a particularly challenging dataset for retrieval-augmented generation.

However, even with Golden retrieval, this dataset only performed at 43.23% correctness and 

is thus the second-worst for Golden retrieval, indicating a challenging dataset in general for 

LLMs, not entirely only for RAG.

For the Coursera dataset, the number of fully correct answers with the Golden baseline 

was 37.04%, while the best search engine (Typesense with keywords and reranking) achieved 

35.19%, demonstrating close proximity to the baseline. Notably, the None baseline for the same 

dataset achieved 20.37% correct answers, suggesting that this dataset contains questions that 

are already partially represented in the world knowledge of the used gpt-oss-120b LLM.

While Meilisearch and Typesense dominate the top 3 results across datasets, only the results 

from the TOEFL-QA dataset could be answered better with an embeddings approach with 

a score of 65.00% for full-document embeddings with reranking. Chunk-based embeddings 

without reranking achieved 63.05% correct answers. With reranking, the same chunk-based 

configuration achieved 62.50%, about 0.55% lower than without reranking. In the same dataset, 

the best performing configurations for Meilisearch and Typesense (both with keyword search 

and reranking) achieved only a score of 46.6% and 45.6%, showing a huge gap of roughly 18% 

between embeddings and full-text search approaches.

On the Coursera dataset, embedding-based search with full documents returned performed 

very similar to Typesense and Meilisearch, each with keyword search reranked.

The highest percentage of partially correct answers was observed in the Coursera dataset, 

where Meilisearch with keywords and without reranking achieved 46.30% partially correct 

responses. When combining correct and partially correct results (% Correct + Partial), this 

configuration reached 77.78%, approaching the Golden baseline of 79.63% for this dataset for 

% Correct + Partial.

To highlight the difference of different results per dataset, Figure 7 shows the performance per 

dataset for the overall best, Meilisearch with keyword enhancement and reranked. It becomes 

clear that there are huge performance differences between the best and worst datasets and 

between the datasets overall.
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Figure 7: The performance per dataset for the overall best retrieval configuration as shown in Table 3: 

Meilisearch with keyword search reranked.

4.4.1 Baseline Performance With Perfect Retrieval

The gap between Golden retrieval and best-performing retrieval configurations varied consid

erably across datasets. Figure 8 shows this difference, plotted by dataset.

It is expected that larger gaps indicate more room for improvement in retrieval quality. This 

helps contextualize whether current retrieval performance is already perfect, or if substantial 

improvements can still be made to achieve retrieval quality.

Most notable are the results from the QASPER and Coursera dataset, where QASPER has 

the biggest difference of 42.28%, and Coursera has only 1.85% difference.

The other datasets perform between 10% and 30%.
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Figure 8: The performance difference from % Correct between Golden and best-performing configu

ration, per dataset.

4.4.2 Baseline Performance Without Retrieval

To isolate the contribution of retrieval to question-answering performance, the baseline results 

obtained with the None retriever were examined. Certain data sets demonstrated substantial 

performance even without any retrieval (None baseline). Should retrieval prove unnecessary 

for generating satisfactory results, the entire RAG architecture could be eliminated, greatly 

simplifying the system. The None baseline is evaluated to determine whether this is the case.

Coursera and TOEFL-QA scored around 20% correctness, closely followed by NaturalQues

tion with 13.68% and HotpotQA with almost 10%. 2WikiMultiHopQA and MuSiQue both 

scored around 8%. QuALITY sits in the middle with 4.29% retrieval correctness. Finally, 

MultiDoc2Dial, MultiFieldQA, NarrativeQA and QASPER scored only around 1%, indicating 

that performance can be enhanced by a lot with retrieval versus without retrieval.
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4.5 Overlap in Correctly Retrieved Documents Between Search En

gines

To determine the potential for hybrid retrieval approaches which combine the results from 

multiple search configurations, the overlap in correctly retrieved documents between different 

search engine configurations was analyzed using the Jaccard index. The Jaccard index measures 

the similarity between two sets as the size of their intersection divided by the size of their union, 

ranging from 0 (no overlap) to 1 (complete overlap).

Pairwise Jaccard statistics across all search engine configurations show huge variation: the 

average Jaccard index is 0.230, with a minimum of 0.002 and a maximum of 112. The low average 

indicates that different search engine configurations retrieve different documents correctly, 

suggesting that combining engines could improve overall retrieval performance.

The best single engine configuration, Meilisearch with Keyword search and no reranking, 

retrieved the correct document for 3,570 questions. When combining all engine configurations 

(the union of correctly retrieved documents), 5,616 questions had the correct document retrieved 

by at least one configuration. This represents 89.4% of the total 6,284 questions and indicates 

a theoretical potential improvement of 33.15% over the best single engine.

Table 7 presents the top 30 search engine combinations ranked by potential retrieval benefit. 

The benefit percentage measures the gain from combining two engines compared to using the 

better one alone. It is calculated as:

Benefit = union size − max(size𝐴, size𝐵)
max(size𝐴, size𝐵)

× 100

Unlike the Jaccard index, which only measures set similarity, the benefit percentage directly 

answers how many additional correct retrievals a combination would provide over using the 

best single engine alone.

The highest benefit of 75.0% is achieved by combining BM25-based full-text search with 

keyword generation and Typesense chunk retrieval both reranked. Notably, Typesense chunk 

retrieval performed poorly as an individual configuration (see Section 4.1), yet it retrieves 

documents that BM25-based full-text search misses. The second-highest benefit of 73.8% comes 

from the same BM25 configuration combined with Typesense chunk retrieval without reranking. 

The third-highest benefit of 73.0% combines embeddings with keyword search and BM25 full-

text search with keyword generation.

Examining the top 30 combinations shows that embedding-based configurations frequently 

appear in high-benefit pairings. Combinations of embeddings with various full-text search 

methods (BM25, Meilisearch, Typesense) consistently show benefits above 55%. This pattern 

is visible in the benefit percentage heatmap shown in Figure 9.

12Combining Chunk-based with and without reranking resulted in a Jaccard index of 1.0, which is not 
surprising.
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Engine 1 Engine 2
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FTS Keyword Reranked Typesense Chunk Reranked 0.076 99 1210 75.0%

FTS Keyword Reranked Typesense Chunk 0.075 99 1222 73.8%

Embeddings Keyword FTS Keyword 0.046 42 868 73.0%

Embeddings Search Reranked FTS Passthrough Reranked 0.156 469 2533 72.8%

Embeddings Keyword Reranked FTS Keyword 0.037 33 871 71.9%

Embeddings Search FTS Passthrough Reranked 0.158 478 2549 71.2%

Embeddings Search Reranked FTS Search Reranked 0.138 405 2536 69.6%

FTS Keyword Reranked Meilisearch Chunk Reranked 0.085 114 1221 69.2%

FTS Keyword Reranked Meilisearch Chunk 0.085 114 1228 68.6%

Embeddings Search FTS Search Reranked 0.147 432 2516 66.7%

Embeddings Full Docs Typesense Passthrough 0.222 758 2657 63.5%

Embeddings Full Docs Typesense Passthrough Reranked 0.226 777 2658 61.8%

Embeddings Full Docs Reranked Meilisearch Passthrough 0.234 888 2914 60.7%

FTS Keyword Typesense Chunk Reranked 0.062 74 1126 60.4%

FTS Keyword Typesense Chunk 0.061 74 1138 59.5%

Embeddings Search Reranked FTS Search 0.117 322 2436 59.1%

Embeddings Search Reranked FTS Passthrough 0.114 312 2430 58.1%

Embeddings Search Typesense Passthrough 0.171 562 2728 57.9%

Embeddings Chunk Reranked Typesense Search 0.262 1043 2932 57.7%

Embeddings Full Docs Reranked Meilisearch Passthrough Reranked 0.244 911 2818 57.6%

Embeddings Search Reranked Typesense Passthrough 0.163 535 2748 57.5%

Embeddings Search FTS Search 0.119 331 2452 57.4%

Embeddings Full Docs Reranked Typesense Search Reranked 0.250 966 2901 56.7%

Embeddings Chunk Typesense Search 0.265 1055 2932 56.7%

Embeddings Chunk Reranked Typesense Search Reranked 0.263 1039 2910 56.6%

Embeddings Chunk Typesense Search Reranked 0.262 1039 2934 56.1%

Embeddings Search Typesense Passthrough Reranked 0.174 578 2735 56.1%

Embeddings Search FTS Passthrough 0.120 330 2428 56.0%

Embeddings Full Docs Reranked Typesense Search 0.249 970 2923 55.9%

FTS Keyword Meilisearch Chunk Reranked 0.071 87 1141 55.6%

Table 7: Top 30 search engine combinations ranked by potential retrieval benefit. Overlap shows 

questions where both engines retrieved the correct document. Exclusive shows questions where only one 

of the two engines retrieved the correct document. Benefit percentage indicates improvement over the 

better single engine.

46



Results

E
m

b
 C

h
k

E
m

b
 C

h
k
 R

E
m

b
 F

u
ll

E
m

b
 F

u
ll
 R

E
m

b
 K

w
d

E
m

b
 K

w
d
 R

E
m

b
 S

rc
h

E
m

b
 S

rc
h
 R

F
T

S
 C

h
k

F
T

S
 C

h
k
 R

F
T

S
 K

w
d

F
T

S
 K

w
d
 R

F
T

S
 P

as
s

F
T

S
 P

as
s 

R

F
T

S
 S

rc
h

F
T

S
 S

rc
h
 R

M
ei

li
 C

h
k

M
ei

li
 C

h
k
 R

M
ei

li
 K

w
d

M
ei

li
 K

w
d
 R

M
ei

li
 P

as
s

M
ei

li
 P

as
s 

R

M
ei

li
 S

rc
h

M
ei

li
 S

rc
h
 R

T
y
p
e 

C
h
k

T
y
p
e 

C
h
k
 R

T
y
p
e 

K
w

d

T
y
p
e 

K
w

d
 R

T
y
p
e 

P
as

s

T
y
p
e 

P
as

s 
R

T
y
p
e 

S
rc

h

T
y
p
e 

S
rc

h
 R

Search Engine

Emb Chk

Emb Chk R

Emb Full

Emb Full R

Emb Kwd

Emb Kwd R

Emb Srch

Emb Srch R

FTS Chk

FTS Chk R

FTS Kwd

FTS Kwd R

FTS Pass

FTS Pass R

FTS Srch

FTS Srch R

Meili Chk

Meili Chk R

Meili Kwd

Meili Kwd R

Meili Pass

Meili Pass R

Meili Srch

Meili Srch R

Type Chk

Type Chk R

Type Kwd

Type Kwd R

Type Pass

Type Pass R

Type Srch

Type Srch R

S
ea

rc
h
 E

n
g
in

e

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B
en

efi
t 

%

Figure 9: Benefit percentage heatmap showing potential gain from combining pairs of search en

gines. Abbreviations: Emb=Embeddings, FTS=Full-Text Search, Meili=Meilisearch, Type=Typesense, 

Chk=Chunk, Kwd=Keyword, Pass=Passthrough, Srch=Search, Full=Full Document, R=Reranked.

The heatmap reveals that most pairwise combinations provide limited benefit, with the majority 

of cells showing low percentages near zero. Few combinations exceed 50% benefit. Full-text 

search with chunk retrieval shows uniformly low benefit when combined with any other 

configuration, consistent with the poor individual performance of this configuration observed 

in Section 4.1.

The combinations of embedding-based methods (the 8 lower rows) with full-text search 

methods (left two third columns) show consistently higher benefits than combinations within 

the same retrieval paradigm. Embedding-based search with keyword generation in some cases 

shows lower benefit when combined with full-text search methods, as both approaches rely on 

keyword matching.

4.6 Conclusion

This chapter compared full-text search and embedding-based retrieval across eleven datasets. 

The overall results (Section 4.1) established performance bounds: the Golden retriever achieved 
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69.40% correctness, while the None retriever baseline achieved 7.65% from parametric knowledge 

alone. Meilisearch with keyword search and reranking achieved the best overall performance at 

40.44% correctness.

Full-text search outperformed embeddings on all datasets except TOEFL-QA, with Coursera 

as a tie, and an average improvement of 13.50%. The gap was particularly pronounced on multi-

hop reasoning datasets such as 2WikiMultiHopQA (43.21% difference) and HotpotQA (32.63% 

difference). Chunk-based retrieval with Meilisearch and Typesense fell below the None baseline, 

indicating that incorrect chunks actively degrade LLM performance.

The per-dataset analysis (Section 4.3, Section 4.4) revealed substantial variation across 

datasets and retrieval configurations, ranging from 73.55% for Meilisearch with keyword search 

and no reranking for the MultiFieldQA dataset to 18.41% for Meilisearch with passthrough and 

no reranking in the NarrativeQA dataset. Reranking produced mixed results, improving some 

configurations while reducing correctness in others.

The overlap analysis (Section 4.5) demonstrated that different retrieval methods correctly 

retrieve different documents, with an average Jaccard index of 0.230. Combining all configura

tions theoretically achieves 89.4% document recall, suggesting substantial potential for hybrid 

retrieval approaches.

These findings demonstrate that full-text search represents a viable and often superior 

alternative to embedding-based retrieval for RAG systems.

5 Discussion
This chapter interprets the experimental results from the previous chapter.

It begins with the overall finding on full-text search performance in Section 5.1, then examines 

dataset-specific variations (Section 5.2), reranking effects (Section 5.3), timing implications 

(Section 5.4), chunk-based retrieval failures (Section 5.5), document recall and generation 

failure (Section 5.6), retrieval dependency (Section 5.7), and the potential for hybrid retrieval 

(Section 5.8). The chapter concludes with practical recommendations in Section 5.9.

5.1 Full-Text Search Performance Compared to Embeddings

The results support the hypothesis that full-text search can perform better in a RAG-Setting 

than relying on searching through embeddings, though this finding is not universal across 

all datasets. Specialized full-text search databases demonstrate competitive or superior perfor

mance relative to embedding-based approaches.

With appropriate query formulation, these dedicated full-text search engines substantially 

outperform embedding-based retrieval. Meilisearch with keyword search generation achieved 

40.44% correctness compared to the best embedding method at 31.19% correctness, a 9.25% 

improvement. Importantly, both full-text search and embedding-based retrieval were tested 

with equivalent query preprocessing strategies, including keyword generation. While full-text 
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search benefits substantially from keyword preprocessing, embedding-based retrieval actually 

performed worse with keyword generation (7.15% correctness) than with direct chunk retrieval 

(24.59% correctness). This indicates that the advantage of full-text search with preprocessing 

is not due to embeddings lacking equivalent preprocessing. Full-text search appears to be 

fundamentally better suited to leverage LLM-generated keywords as search terms.

A notable exception is the TOEFL-QA dataset, where embedding-based retrieval outper

formed full-text search (65.00% vs. 46.62%), demonstrating that semantic search retains 

advantages for certain query types requiring deeper language understanding. This exception is 

discussed further in Section 5.2 and Section 5.9.

Both Typesense and Meilisearch, which implement search and ranking algorithms beyond 

traditional BM25, demonstrated at least comparable performance to SQLite-based full-text 

search with BM25, validating their utility as retrieval backends for RAG systems. When 

using passthrough or search query modes, the observed ~4% improvement (29.30%–29.60% 

vs. 25.27%) is modest enough that it may not generalize without further statistical testing, 

which is beyond the scope of this thesis. However, when combined with keyword generation, 

the advantage of modern search engines becomes more pronounced, with Meilisearch achieving 

40.44% compared to BM25′s best result of 16.12%.

Simple full-text search with BM25 achieves comparable performance of 25.27% when com

bined with reranking compared to embeddings chunk retrieval at 24.59%, with even lower 

complexity than having to use an external database like Meilisearch or Typesense.

With embedding-based retrieval, the results vary slightly when the full document was passed 

to the LLM. With the full document, a 28.58% correctness was achieved, vs. 24.59% with only 

retrieved chunks (both without reranking). This marginal difference indicates the LLM can 

generate better answers when it has the full document, but the improvement is not as good as 

what other databases achieve.

The difference in Document Recall between full document and chunks can be explained by 

the possibility that retrieving full documents may result in a longer total context that pushed 

actually relevant documents out of the final list, particularly when those relevant documents 

were ranked lower in the retrieval order.

5.2 Dataset-Specific Performance Variation

The substantial performance variation across datasets (overall worst of 18.41% in NarrativeQA 

vs overall best of 73.55% in the MultiFieldQA dataset, each with Meilisearch and the best 

result per dataset) indicates that retrieval-augmented generation effectiveness depends heavily 

on dataset characteristics. This suggests that certain types of questions, document structures, 

or reasoning requirements are more amenable to retrieval augmentation. Understanding these 

characteristics when building RAG systems could inform both system design and dataset 

selection for future work.
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For the NarrativeQA dataset, the Golden retriever achieves 43.23% correct answers (the 

lowest Golden baseline among all datasets), and the best-performing search engine reaches only 

18.41% correctness. This dataset shows poor suitability for retrieval-based question answering 

overall. The low performance for the best overall configuration suggests that NarrativeQA 

involves contexts that are too large or complex for effective retrieval, or that the nature of 

narrative questions requires different retrieval strategies than those employed in this thesis.

5.3 Reranking Effects

The marginal or sometimes negative effects of reranking (particularly for Meilisearch and Type

sense keyword search) suggest that modern search engines may already provide sufficiently good 

ranking. For MultiFieldQA, Meilisearch with keyword search and reranking (66.12% correct) 

performed worse than the same configuration without reranking (73.55% correct), potentially 

by demoting relevant documents.

Other reranking approaches may yield different results, though Jina Reranker v3 represents 

current state-of-the-art performance. The marginal improvements observed suggest that for 

full-text search engines like Meilisearch and Typesense, the initial ranking quality is already 

sufficiently high that reranking provides limited additional value.

On the other hand, reranking improved results for BM25-based full-text search implementa

tions by a moderate 2.81%, from 22.46% to 25.27% and for embeddings with full documents from 

28.58% to 31.19%. This indicates that reranking may still provide a little value when the initial 

retrieval ranking is less sophisticated, as is the case with traditional BM25 implementations.

5.4 Timing Implications

As noted in Section 4.2, the timing analysis presented here is descriptive, and results should be 

interpreted as observed patterns rather than precise benchmarks.

A potential confounding factor in comparing retrieval methods is that different configurations 

may return different numbers of documents, which could affect both accuracy and timing. To 

control for this, the Pearson correlation between average content length and completion time was 

analyzed (Figure 6). The analysis reveals no systematic relationship between document return 

volume and performance differences across retrieval methods. The notably longer completion 

times observed for the best-performing configurations (Meilisearch and Typesense with keyword 

search) do not appear to be related to more documents being passed to the LLM in these 

configurations.

A possible factor to explain these higher response times is infrastructure load. Because the 

experiment relied on a university-hosted instance, other users accessing the same GPU resources 

simultaneously may have introduced variability in response times.

The observed extended average response time for NarrativeQA (22 seconds with Meilisearch) 

is consistent with the hypothesis that context size plays a role, as processing larger contexts 
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would be expected to require more computational time, though this interpretation is subject 

to the timing measurement limitations noted above.

In the observed measurements, retrieving documents from embeddings appeared faster 

(roughly 200ms) than retrieving full documents from an external search engine like Meilisearch.

5.5 Failures of Chunk-Based Retrieval with Full-Text Search

The particularly poor performance of chunk-based retrieval with Meilisearch and Typesense 

below the None baseline represents an important failure mode specific to full-text search engines. 

When incorrect chunks are retrieved, they seem to actively mislead the LLM, resulting in worse 

performance than providing no retrieval augmentation at all.

Notably, this problem does not affect embedding-based retrieval: chunks with embeddings 

achieved 24.59% correctness. A plausible hypothesis for this difference relates to how each 

retrieval method operates. Embedding-based search captures semantic meaning from text, 

allowing smaller chunks to be matched based on conceptual similarity. Full-text search, however, 

relies on keyword matching and requires sufficient surrounding context to ensure relevant terms 

appear together in the indexed text. When documents are chunked too aggressively for full-text 

search, individual chunks may lack the keyword density needed for accurate matching, leading 

to retrieval of irrelevant passages. This explanation is consistent with the observed behavior 

but has not been empirically validated through keyword density analysis.

For practical RAG implementations using full-text search, indexing complete documents 

or larger passages appears preferable to fine-grained chunking strategies that work well with 

embeddings.

5.6 Document Recall and Generation Failure

The document recall results reveal a distinction between retrieval failure and generation 

failure. Even the Golden retriever, with perfect document recall, only achieves 69.40% answer 

correctness. This indicates that approximately 30% of incorrect answers in the best retrieval 

case result from generation failure rather than retrieval failure. The LLM fails to extract the 

correct answer even when provided with the relevant document.

This finding has large implications for RAG system optimization. Improving retrieval quality 

can only address errors caused by missing relevant documents. The substantial portion of errors 

attributable to generation failure requires different interventions, such as improved prompting 

strategies, better context presentation, or more capable generation models.

The relationship between document recall and answer correctness also differs markedly 

between retrieval methods (see Figure 4). Embedding-based configurations show a flatter rela

tionship: even when document recall increases substantially (from approximately 7% to 40%), 

the percentage of correct answers does not increase proportionally, remaining in the 17-25% 

range. In contrast, full-text search engines (BM25-based SQLite, Meilisearch, Typesense) show 
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a steeper, more consistent positive relationship, continuing to achieve higher correctness rates 

as recall increases to 40%.

This pattern suggests that full-text search not only retrieves documents more effectively but 

also retrieves them in a form more amenable to answer extraction. One possible explanation is 

that full-text search always returns the full document and the used LLM is sufficiently capable 

of extracting the correct facts required for the answer from the whole document. Embedding-

based retrieval may return semantically related documents where the answer is expressed in 

different terms, requiring more sophisticated reasoning to connect the query to the answer.

The difference in recall between reranking configurations can differ because the reranker 

operates on all documents returned by the initial retrieval stage and re-orders them based on 

relevance scores before selecting only the top 𝑘 documents13. If the gold document was initially 

retrieved but ranked outside the top 𝑘 positions, reranking may either promote it into the final 

set, improving recall, or fail to do so. Conversely, if the gold document was in the top 10 before 

reranking, reranking could potentially push it out if other documents (wrongly) score higher.

5.7 Retrieval Dependency per Dataset

When looking at the results for the retrieval of the None baseline, two distinct categories are 

visible:

High baseline performance datasets (e.g., TOEFL-QA and Coursera) achieved around 

20% correct answers without any retrieval, indicating that these questions may already be well-

represented in the LLMs training data or represent question types that the model handles well 

inherently. These datasets show limited benefit from retrieval augmentation, as the relative 

improvement is constrained by the already substantial baseline.

Low baseline performance datasets (e.g., MultiFieldQA with 1.65% None baseline) 

demonstrate strong dependence on retrieval, with search engines providing substantial perfor

mance gains over the baseline. These represent scenarios where external knowledge is critical 

for answering questions.

Of note here is that the dataset was originally filtered with GPT-4o but the experiment has 

been run with the newer gpt-oss-120b. Both have different knowledge cutoff times, leading to 

the conclusion that the latter model has more knowledge than GPT-4o.

TOEFL-QA achieved the highest performance with the Golden retriever at 88.89% correct 

answers, though this must be interpreted in light of its already strong 19.60% None baseline. 

Since the TOEFL-QA dataset tests for English understanding and text generation rather than 

only QA performance [53], this indicates the strong results may be attributed to the advanced 

linguistic abilities of the used gpt-oss-120b LLM. Current models demonstrate sufficient profi

ciency in English understanding to already perform well on this benchmark without requiring 

retrieval, which could explain the observed high performance in the experimental results.

13In the experiment in this thesis, up to 10 documents were ultimatly returned
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MultiFieldQA demonstrates the best balance of high absolute performance (85.12% Golden, 

73.55% best search engine) combined with low baseline performance (1.65%), indicating genuine 

value added by retrieval.

Across datasets, Meilisearch and Typesense consistently appeared as top-performing search 

engines, with keyword-based search generally outperforming other retrieval methods. The effec

tiveness of different configurations varied by dataset, suggesting that optimal retrieval strategies 

may be task dependent.

5.8 Potential for Hybrid Retrieval

The overlap analysis in Section 4.5 reveals that different search engine configurations retrieve 

different documents correctly. The low average Jaccard index of 0.230 indicates that combining 

engines could improve overall retrieval performance. This complementary behavior suggests 

that full-text search and embedding-based retrieval may capture different aspects of relevance, 

making hybrid approaches attractive.

The theoretical upper bound shows that combining all configurations could correctly retrieve 

documents for 89.4% of questions, compared to 56.25% for the best single configuration. While 

achieving this theoretical maximum is unrealistic in practice, even partial combinations show 

substantial potential gains. The highest-benefit pairings (exceeding 70%) combine methods 

from different retrieval paradigms, often embedding-based methods with full-text search. This 

becomes very clear when examining the top 30 combinations as shown in Table 7, the list is 

dominated by combinations which include embedding-based retrieval methods.

This pattern is explained by the fundamental difference in how these methods operate. 

Embedding-based search matches documents based on semantic similarity in vector space, 

capturing conceptual relationships even when exact keywords differ. Full-text search relies on 

keyword matching and term frequency, excelling when queries and documents share vocabulary. 

When one method fails to retrieve the correct document, the other may succeed because it 

operates on different matching principles.

Importantly, the heatmap in Figure 9 shows that not all combinations are beneficial. Most 

pairwise combinations provide limited improvement, with many cells near zero. Arbitrary 

combination of search engines is unlikely to improve results; instead, combinations should be 

chosen deliberately to leverage complementary strengths. Full-text search with chunk retrieval 

shows uniformly low benefit regardless of the pairing, consistent with its poor individual 

performance.

5.9 Assessment and Recommendations

The optimal choice between full-text and semantic search methods depends a lot on the 

characteristics of both the document corpus and expected query patterns.

Clear performance advantages for full-text search were shown across most tested datasets, 

with particularly strong results observed when query preprocessing steps were added. Compet
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itive performance by semantic search using embeddings was exhibited only in specific contexts, 

most notably in the TOEFL-QA dataset, where the advantage is explained by the requirement 

for deeper semantic understanding of vague or ambiguous queries.

5.9.1 Trade-offs Between Accuracy and Efficiency

The results suggest a trade-off between retrieval quality and response time. Configurations 

employing retrieval generally achieved higher accuracy but incurred increased latency in 

the observed measurements. For MultiFieldQA, the observed 23-second increase in average 

response time (from 9 to 32 seconds) when using retrieval with Meilisearch yielded substantial 

accuracy improvements, suggesting that this trade-off may be worthwhile for accuracy-critical 

applications. The appropriateness of this trade-off depends on the specific use case and latency 

requirements.

5.9.2 Context-Dependent Recommendations

Based the results from the experiment, FTS should be used to implement search in a RAG 

system when expected queries look for specific facts or concrete knowledge, and documents are 

suitable for keyword-based full-text search. This is usually the case when searching for specific 

keywords would yield relevant documents and consistent vocabulary is used in most of the 

documents.

Because the semantic search alternative to full-text search approaches was outperformed most 

of the time and with a wide margin across many different datasets, full-text search represents 

a strong default choice for most practical applications of RAG, particularly those involving 

factual queries and keyword-friendly document corpora.

On the other hand, embedding-based semantic search has advantages over full-text search 

when queries are inherently vague or conceptual in nature. In these cases, semantic under

standing beyond surface-level keyword matching is required by the documents. This becomes 

even more visible when a mismatch between search queries and the document corpus is present 

and context and meaning are more important than exact term matching.

This pattern is illustrated clearly by the TOEFL-QA results, as semantic understanding over 

keyword matching is favored by the dataset’s characteristics.

In any case, an important finding is that incorporating a query preprocessing step, such 

as keyword generation or query reformulation, significantly improves retrieval performance. 

Even when searching in a full-text search index with the user query directly produces results 

similar to embedding-based approaches, the addition of preprocessing creates measurably better 

outcomes.

5.9.3 Dataset-Specific Considerations

Performance varies considerably across different dataset types, highlighting the importance of 

evaluating retrieval methods against the documents and queries that are used.
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For the best results, practitioners should analyze the structure, vocabulary, and content 

organization of their specific document collection, then consider how users typically formulate 

questions and what information needs drive those queries and choose a search engine setup 

based on that. Comparing this to the datasets tested in the experiment of this thesis helps 

identify analogous scenarios.

Ideally, based on the assessment of queries and documents, a small evaluation dataset should 

be curated to validate performance for the use case, effectively re-running the experiment of 

this thesis on a smaller scale. The results of the experiment can then be used to compare 

multiple different implementations against each other to make an informed decision about the 

architecture required.

The NarrativeQA dataset presents an edge case worth noting. Its combination of large 

document sizes and complex narrative structure poses challenges for both retrieval paradigms. 

This requires alternative approaches beyond the straightforward architecture that was tested 

in this thesis.

5.9.4 Limitations and Caveats

These recommendations apply within the scope and constraints of the presented experimental 

design.

5.9.4.1 Single Model Dependency

Importantly, all experiments were conducted using a single LLM (gpt-oss-120b) for generation, 

query preprocessing, keyword extraction, and answer evaluation. The relative performance of 

full-text search versus embedding-based retrieval may differ with other model families (e.g., 

Claude, Llama, Gemini), smaller or larger models, or models with different training data and 

capabilities. Similarly, only one embedding model (Qwen3-4B) was tested for semantic search; 

other embedding models such as OpenAI’s text-embedding may yield different results. The 

findings reported here are therefore specific to this model configuration and may not generalize 

to all RAG implementations without further validation.

5.9.4.2 Evaluation Methodology

The same model (gpt-oss-120b) was used for both answer generation and automated evaluation, 

which could theoretically introduce systematic bias. However, the evaluation was conducted 

in a stateless manner: each answer was evaluated independently without the model having 

access to or context of other generated answers. The model received only the question, the 

correct reference answer, and the generated answer to evaluate, with no information about 

which retrieval method produced the answer or how other answers were rated. This design 

mitigates concerns about self-preferential rating, as the evaluation model cannot identify its 

own outputs or adjust ratings based on retrieval method.

The 84.7% agreement rate with manual labels provides empirical validation that the auto

mated evaluation produces reliable results despite using the same underlying model. Since the 

55



Conclusion

stateless evaluation design excludes method-specific bias, actual measurement error is expected 

to be random, which softens rather than inflates observed effect sizes. Nonetheless, using 

separate model families for generation and evaluation in future work could provide additional 

validation and reduce any potential for shared systematic blind spots in both generation and 

evaluation.

5.10 Conclusion

While full-text search is strongly favored by the results in the majority of scenarios, the recurring 

answer to “which method should be used?” remains: it depends. The dependence, however, is 

systematic and predictable based on document corpus and query characteristics.

Within the scope examined here, the findings are sufficiently clear and interpretable to provide 

actionable guidance for practitioners designing RAG systems with similar model configurations. 

For most implementations, full-text search represents a robust default choice, with semantic 

search reserved for scenarios where semantic understanding demonstrably outweighs the benefits 

of keyword matching. Practitioners using different LLMs should validate these findings against 

their specific model configuration before making architectural decisions.

6 Conclusion
This thesis investigated whether full-text search can serve as a viable alternative to embedding-

based retrieval in RAG systems. The motivation originated from the considerable infrastructure 

complexity that embedding-based approaches introduce, including embedding model deploy

ment, vector database management, and similarity search mechanisms. Full-text search, by 

contrast, offers a more straightforward implementation path where databases handle indexing 

automatically without requiring external embedding pipelines.

To address this research question, an experiment was conducted using a multi-source dataset 

comprising 6,284 questions across eleven different QA benchmarks. The dataset was originally 

filtered for different research on Long-Context RAG using GPT-4o to identify questions that 

cannot be answered from world knowledge alone, ensuring that retrieval is genuinely required. 

Four primary search backends were evaluated: SQLite Full-Text Search with BM25, pgVector 

for embedding-based semantic search, and the specialized full-text search engines Typesense 

and Meilisearch. Each search engine was tested with different retriever architectures including 

direct passthrough, LLM-based query rewriting, keyword generation, and chunk-based retrieval. 

The gpt-oss-120b model served as both the generation model and for query preprocessing tasks.

6.1 Key Findings

The experimental results demonstrate that, within the tested configuration using gpt-oss-120b 

for generation and Qwen3-4B for embeddings, full-text search can not only match but outperform 

embedding-based retrieval. Meilisearch with keyword generation and reranking achieved the 
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highest overall correctness at 40.44%, compared to 31.19% for the best embedding-based 

configuration (full-document retrieval with reranking).

Specialized full-text search databases consistently outperformed traditional BM25-based 

implementations. Typesense and Meilisearch, which employ ranking algorithms beyond term 

frequency metrics, both achieved 29.60% and 29.30% correctness with direct search compared 

to 28.58% for embeddings (with full documents) and 25.27% for BM25-based SQLite Full-

Text Search. This suggests that modern search engine implementations provide meaningful 

advantages for retrieval tasks, even when not further optimized.

Query preprocessing emerged as a critical factor for retrieval quality. Combining full-text 

search with LLM-generated keywords significantly improved results across most configurations.

Embedding-based retrieval was also tested with equivalent keyword preprocessing but did not 

benefit from it. Keyword-based embedding search achieved only 7.15% correctness compared 

to 24.59% for direct chunk retrieval. This asymmetry indicates that the advantage of full-text 

search with preprocessing stems from the fundamental suitability of keyword-based search to 

leverage LLM-generated terms, rather than from an unfair comparison where only one method 

received preprocessing.

Reranking with Jina Reranker v3, a state-of-the-art model on the BEIR benchmark, provided 

only marginal improvements and in some cases degraded performance. For Meilisearch with 

keyword search, reranking improved correctness by 1.26%. In certain dataset configurations, 

such as MultiFieldQA, reranking actually decreased performance by 7.43%. Since these results 

were obtained with a current best-in-class reranking model, they suggest that modern search 

engines may already provide sufficiently effective ranking, limiting the potential gains from 

additional reranking steps.

Performance varied considerably across datasets. MultiFieldQA achieved 73.55% correctness 

with the best configuration, while NarrativeQA reached only 18.41%. The TOEFL-QA dataset 

represented the sole exception where embeddings outperformed full-text search (65.00% vs. 

46.62%), likely due to the semantic nature of language comprehension questions. These varia

tions underscore that optimal retrieval strategies depend on dataset characteristics including 

document structure, query patterns, and the type of reasoning required.

Chunk-based retrieval with full-text search performed poorly, often falling below the no 

retrieval baseline. This indicates that incorrect chunking strategies can actively mislead the 

language model, resulting in worse performance than providing no retrieved context at all.

6.2 Future Work

The overlap analysis in Section 4.5 demonstrates substantial potential for hybrid retrieval 

approaches. The highest-benefit pairings combine methods from different retrieval paradigms, 

particularly embedding-based search with full-text search. This suggests that embedding-

based semantic matching and keyword-based full-text search capture complementary aspects 
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of relevance. Future work could investigate practical hybrid retrieval strategies that leverage 

these complementary strengths without requiring exhaustive combination of all configurations.

Reranking did not yield the expected performance improvement, despite using Jina Reranker 

v3, a state-of-the-art model. While this suggests the limitation lies in the fundamental 

interaction between modern search engine ranking and reranking rather than model choice, 

a systematic evaluation across multiple reranking models could confirm whether alternative 

approaches might be more effective for specific dataset characteristics or search engine configu

rations. Additionally, analyzing whether gold documents are demoted by reranking could explain 

the observed performance degradation in certain configurations.

The chunk sizes used in this experiment (max. 512 characters with 50 character overlap) 

proved too small for effective full-text search. Future work could systematically test larger chunk 

sizes (e.g., 2000-4000 characters) to identify whether a threshold exists where full-text search 

on chunks becomes competitive with full-document retrieval. Such investigation could clarify 

whether the observed chunk-based failure is specific to the chunk sizes tested or represents a 

broader limitation, which could impact the relative performance comparison between retrieval 

methods.

Ablating the inclusion of relevance scores in the generator prompt could quantify whether 

heterogeneous scoring across search engines influences outcomes.

A further direction for future work is validating these findings across different model families. 

This thesis used gpt-oss-120b exclusively for generation, query preprocessing, and evaluation. 

Testing with other LLM families such as Claude, Llama, or Gemini would establish whether the 

observed advantages of full-text search generalize beyond this specific model or are particular to 

its characteristics. Similarly, evaluating alternative embedding models beyond Qwen3-4B could 

reveal whether the performance gap between full-text search and semantic search varies with 

embedding quality. Using different models for generation versus evaluation could also provide 

additional validation of the automated evaluation methodology.
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A Appendix

A.1 Answer Prompt

The prompt used by the experiment implementation to answer questions:

Use the following information to assist the user:

-------------

{results_str}

-------------

You are an AI assistant that helps people find information. Only use the information 

given to you.

Focus on directly providing the answer to the question. You don't need to explain 

your answer at length, a very short explanation is sufficient.

Do not make up an answer.

If you do not know the answer to a question, respond by saying verbatim "I do not 

know the answer to your question."

{results_str} is replaced with a concatenated string of the results with the text and score and 

separated by ---. A result string can look like this (texts are shortened for brevity):

score: 0.88323

text: Alexander M. Patch American High School (also known as "Patch American High 

School" or "Patch High School") was an English language high school on Patch Barracks 

in Stuttgart, ...

---

score: 0.87303

text: List of NFL franchise post-season droughts Playoff Droughts 0Team0 Last earned 

appearance in post-season Seasons Buffalo Bills ^ 1999 AFC Wild Card Playoffs 17 

Cleveland Browns ^ 2002 AFC Wild Card Playoffs 14 Los Angeles Rams ^ 2004 NFC 

Divisional ...

---

score: 0.6323

text: Houston Astros The Astros clinched their first division title as a member of 

the American League West division, and first division title overall since 2001. ...

---

score: 0.559

text: Henry IV (11 November 1050 – 7 August 1106) was Holy Roman Emperor from 1084 to 

1105, king of Germany from 1054 to 1105, king of Italy and Burgundy from 1056 to 

1105, and duke of Bavaria from 1052 to 1054. ...

A.2 Query rewriting prompts

Both the Search Query and Keyword prompts are divided into a System prompt and user 

message. They are implemented using the dspy Python library to simplify the implementation.

In both cases, the {user_query} placeholder is replaced at runtime with the input query.

I
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A.2.1 Search Query Prompt

The prompt that is used to rewrite the user query into a more suitable search query.

The system prompt looks like this:

Your input fields are:

1. `query` (str):

Your output fields are:

1. `output_query` (str):

All interactions will be structured in the following way, with the appropriate values 

filled in.

[[ ## query ## ]]

{query}

[[ ## output_query ## ]]

{output_query}

[[ ## completed ## ]]

In adhering to this structure, your objective is: 

        Return a query for searching documents in a database that might contain the 

answer to the query.

The user message looks like this:

[[ ## query ## ]]

{user_query}

Respond with the corresponding output fields, starting with the field `[[ ## 

output_query ## ]]`, and then ending with the marker for `[[ ## completed ## ]]`.

As an example, for a user query of Do both films Lifeforce (film) and Via Pony Express 

have the directors that share the same nationality? the response might look like this:

[[ ## output_query ## ]]

"Lifeforce (film) director nationality" OR "Via Pony Express director nationality"

[[ ## completed ## ]]

A.2.2 Keyword Prompt

The Keyword prompt is used to create keywords for search based on the user query.

The system prompt looks like this:

Your input fields are:

1. `query` (str):

Your output fields are:

1. `keywords` (list[str]):

All interactions will be structured in the following way, with the appropriate values 

filled in.

[[ ## query ## ]]

II
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{query}

[[ ## keywords ## ]]

{keywords}        # note: the value you produce must adhere to the JSON schema: 

{"type": "array", "items": {"type": "string"}}

[[ ## completed ## ]]

In adhering to this structure, your objective is: 

        Return a list of keywords for searching documents in a database that might 

contain the answer to the query.

The user message looks like this:

[[ ## query ## ]]

{user_query}

Respond with the corresponding output fields, starting with the field `[[ ## keywords 

## ]]` (must be formatted as a valid Python list[str]), and then ending with the 

marker for `[[ ## completed ## ]]`.

As an example, for a user query of Do both films Lifeforce (film) and Via Pony Express 

have the directors that share the same nationality? the response might look like this:

[[ ## keywords ## ]]

["Lifeforce film director", "Via Pony Express director", "director nationality", 

"Lifeforce director nationality", "Via Pony Express director nationality", "film 

directors nationality comparison", "British director Lifeforce", "American director 

Via Pony Express", "film director nationality Lifeforce", "film director nationality 

Via Pony Express"]

[[ ## completed ## ]]

A.3 Evaluation Prompt

This is the prompt that’s produced after optimizing it with dspy as outlined in Section 3.5. It 

is divided into a System prompt and User message.

The System prompt:

Your input fields are:

1. `question` (str): 

2. `correct_answer` (str): 

3. `provided_answer` (str):

Your output fields are:

1. `correctness` (Literal['correct', 'partially_correct', 'incorrect']): ${reasoning}

All interactions will be structured in the following way, with the appropriate values 

filled in.

[[ ## question ## ]]

{question}

[[ ## correct_answer ## ]]
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{correct_answer}

[[ ## provided_answer ## ]]

{provided_answer}

[[ ## correctness ## ]]

{correctness}        # note: the value you produce must exactly match (no extra 

characters) one of: correct; partially_correct; incorrect

[[ ## completed ## ]]

In adhering to this structure, your objective is: 

        Given the fields `question`, `correct_answer`, `provided_answer`, produce the 

fields `correctness`.

The User message:

[[ ## question ## ]]

{question}

[[ ## correct_answer ## ]]

{correct_answer}

[[ ## provided_answer ## ]]

{provided_answer}

The placeholders {question}, {correct_answer} and {provided_answer} are replaced with 

appropriate values at runtime.

A potential user message and response might look like this:

[[ ## question ## ]]

What may happen if the VR headset lenses are exposed to sunlight or strong light?

[[ ## correct_answer ## ]]

Exposure to sunlight or strong light may cause permanent yellow spot damage on the 

screen.

[[ ## provided_answer ## ]]

Exposure to direct sunlight or strong light may cause permanent yellow spot damage on 

the screen. Such screen damage is not covered by the warranty.

Assistant message:

[[ ## correctness ## ]]

correct

[[ ## completed ## ]]

IV
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A.4 Search Engine Results by Dataset

Column abbreviations:

• Eng. (Engine): Emb = Embeddings, FTS = Full-Text Search, Meili = Meilisearch, Type = 

Typesense, Gold = Golden, None = No retrieval

• Ret. (Retriever): P = Passthrough, C = Chunk, K = Keyword, S = Search, F = Full Docs

• RR (Reranked): Y = Yes, N = No

• Retr., Compl., Resp.: Average retrieval, completion, and response times in seconds
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Gold P N 73.8% 1.9% 75.7% 0.01 1.8 1.8

None P N 8.7% 0.6% 9.4% 0.00 0.9 0.9

N 8.4% 0.7% 9.1% 0.23 1.1 1.4C

Y 7.0% 0.9% 7.9% 0.36 1.5 1.9

N 19.4% 1.4% 20.8% 0.58 8.1 8.7F

Y 18.8% 0.9% 19.6% 35.68 7.3 43.0

N 4.5% 0.7% 5.2% 1.12 1.0 2.1K

Y 3.9% 0.8% 4.6% 1.71 1.2 2.9

N 7.0% 0.4% 7.4% 0.24 1.0 1.3

Emb

S

Y 4.5% 0.2% 4.8% 0.34 1.0 1.3

N 9.9% 0.6% 10.5% 0.00 0.9 0.9C

Y 9.8% 0.8% 10.5% 0.34 1.3 1.6

N 19.6% 0.6% 20.2% 2.35 10.0 12.4K

Y 18.8% 1.0% 19.8% 6.25 12.0 18.3

N 35.8% 1.1% 36.9% 0.14 4.3 4.5P

Y 40.9% 0.6% 41.5% 2.18 5.1 7.2

N 37.0% 0.6% 37.7% 1.69 5.0 6.7

FTS

S

Y 40.8% 0.9% 41.6% 3.34 5.0 8.4

N 0.2% 0.1% 0.4% 0.01 1.1 1.1C

Y 0.6% 0.0% 0.6% 0.11 1.8 1.9

N 56.0% 1.6% 57.6% 0.26 10.7 11.0K

Y 55.0% 1.2% 56.2% 4.41 34.6 39.1

N 43.3% 1.2% 44.5% 0.13 11.6 11.7P

Y 41.8% 1.2% 43.0% 3.60 11.6 15.2

N 58.5% 1.1% 59.6% 0.10 8.6 8.7

Meili

S

Y 58.9% 1.2% 60.1% 2.51 8.7 11.3

N 0.5% 0.0% 0.5% 0.22 1.0 1.2C

Y 0.2% 0.0% 0.2% 0.53 1.4 1.9

N 62.6% 1.5% 64.1% 0.84 8.8 9.6K

Y 57.1% 1.1% 58.2% 6.40 28.6 35.0

N 45.6% 0.9% 46.5% 0.36 4.4 4.8P

Y 44.6% 1.0% 45.6% 3.42 4.4 7.9

N 57.9% 1.0% 58.9% 0.22 4.3 4.6

Type

S

Y 56.2% 1.2% 57.5% 1.74 4.2 5.9

Table 8: 2WikiMultihopQA
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Gold P N 37.0% 42.6% 79.6% 0.00 1.6 1.6

None P N 20.4% 46.3% 66.7% 0.00 1.2 1.2

N 24.1% 44.4% 68.5% 0.29 1.1 1.4C

Y 24.1% 35.2% 59.3% 0.35 1.7 2.1

N 35.2% 38.9% 74.1% 0.44 8.3 8.8F

Y 25.9% 42.6% 68.5% 18.51 7.2 25.7

N 7.4% 44.4% 51.9% 1.64 1.3 2.9K

Y 5.6% 35.2% 40.7% 2.25 1.4 3.7

N 20.4% 46.3% 66.7% 0.27 1.4 1.6

Emb

S

Y 18.5% 37.0% 55.6% 0.35 1.2 1.6

N 20.4% 40.7% 61.1% 0.01 1.2 1.2C

Y 22.2% 42.6% 64.8% 0.01 1.7 1.7

N 20.4% 50.0% 70.4% 1.38 6.8 8.2K

Y 22.2% 44.4% 66.7% 6.50 10.5 16.9

N 25.9% 42.6% 68.5% 0.01 1.2 1.3P

Y 22.2% 48.1% 70.4% 0.05 1.4 1.5

N 22.2% 42.6% 64.8% 1.30 1.4 2.7

FTS

S

Y 16.7% 42.6% 59.3% 1.04 1.6 2.6

N 11.1% 31.5% 42.6% 0.01 1.1 1.1C

Y 7.4% 31.5% 38.9% 0.11 1.8 1.9

N 31.5% 46.3% 77.8% 0.28 8.2 8.5K

Y 33.3% 42.6% 75.9% 4.03 23.7 27.7

N 13.0% 50.0% 63.0% 0.24 9.1 9.3P

Y 18.5% 46.3% 64.8% 4.35 9.2 13.6

N 20.4% 51.9% 72.2% 0.18 7.4 7.6

Meili

S

Y 22.2% 48.1% 70.4% 2.73 6.9 9.6

N 7.4% 29.6% 37.0% 0.41 1.1 1.5C

Y 5.6% 13.0% 18.5% 0.82 1.3 2.2

N 24.1% 48.1% 72.2% 0.80 7.8 8.6K

Y 35.2% 42.6% 77.8% 6.15 22.3 28.5

N 18.5% 46.3% 64.8% 1.12 3.5 4.6P

Y 16.7% 38.9% 55.6% 5.23 3.6 8.8

N 22.2% 40.7% 63.0% 0.37 2.0 2.4

Type

S

Y 24.1% 29.6% 53.7% 1.44 2.4 3.8

Table 9: Coursera
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Gold P N 85.4% 1.4% 86.7% 0.01 2.0 2.0

None P N 9.8% 0.9% 10.7% 0.00 1.3 1.3

N 21.8% 0.1% 21.9% 0.24 1.4 1.6C

Y 20.8% 0.4% 21.1% 0.36 1.9 2.2

N 31.9% 0.9% 32.8% 0.49 12.3 12.8F

Y 30.4% 0.8% 31.1% 24.75 10.8 35.6

N 3.0% 0.7% 3.7% 1.28 1.2 2.4K

Y 1.6% 0.6% 2.2% 1.89 1.4 3.3

N 12.0% 0.2% 12.3% 0.24 1.2 1.5

Emb

S

Y 11.0% 0.9% 11.9% 0.33 1.3 1.7

N 7.4% 0.7% 8.2% 0.00 1.3 1.3C

Y 8.9% 0.4% 9.2% 0.01 1.8 1.8

N 18.3% 1.4% 19.7% 2.90 11.8 14.7K

Y 16.9% 0.6% 17.5% 6.42 13.0 19.4

N 50.6% 1.4% 51.9% 0.05 4.8 4.9P

Y 51.5% 1.1% 52.6% 1.19 5.3 6.5

N 47.8% 1.0% 48.8% 1.72 4.9 6.6

FTS

S

Y 48.8% 0.4% 49.1% 2.94 4.9 7.9

N 11.4% 0.2% 11.6% 0.01 1.3 1.3C

Y 11.1% 0.8% 11.9% 0.10 2.0 2.1

N 47.6% 1.2% 48.8% 0.24 12.4 12.6K

Y 47.4% 2.0% 49.4% 3.90 43.2 47.1

N 44.9% 1.4% 46.2% 0.13 11.6 11.7P

Y 45.2% 1.8% 47.0% 3.54 11.6 15.2

N 50.8% 1.5% 52.3% 0.09 9.2 9.3

Meili

S

Y 57.1% 1.4% 58.5% 2.38 9.4 11.8

N 9.2% 0.7% 9.9% 0.22 1.0 1.3C

Y 8.9% 0.1% 9.0% 0.53 1.4 1.9

N 50.6% 0.5% 51.1% 0.85 10.8 11.7K

Y 42.0% 1.5% 43.5% 5.66 41.4 47.0

N 60.5% 1.9% 62.3% 0.33 4.8 5.1P

Y 62.4% 0.9% 63.2% 2.09 4.8 6.9

N 62.8% 0.9% 63.7% 0.12 4.2 4.3

Type

S

Y 64.5% 1.5% 66.0% 1.16 4.3 5.5

Table 10: HotpotQA
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Gold P N 53.8% 13.9% 67.7% 0.00 1.5 1.5

None P N 1.9% 1.9% 3.8% 0.00 0.9 0.9

N 12.7% 8.2% 20.9% 0.23 1.2 1.5C

Y 12.0% 6.3% 18.4% 0.34 1.5 1.9

N 10.8% 5.1% 15.8% 0.50 4.8 5.3F

Y 17.1% 5.7% 22.8% 31.44 4.0 35.4

N 7.0% 7.6% 14.6% 1.70 1.1 2.8K

Y 4.4% 3.8% 8.2% 2.53 1.2 3.7

N 11.4% 7.0% 18.4% 0.24 1.1 1.4

Emb

S

Y 11.4% 8.9% 20.3% 0.31 1.1 1.4

N 5.1% 3.8% 8.9% 0.01 0.9 0.9C

Y 5.1% 2.5% 7.6% 0.03 1.2 1.3

N 10.8% 3.8% 14.6% 1.50 5.8 7.3K

Y 9.5% 5.1% 14.6% 10.74 7.1 17.9

N 7.0% 7.6% 14.6% 0.38 3.2 3.6P

Y 10.1% 6.3% 16.5% 5.20 3.6 8.8

N 5.7% 2.5% 8.2% 1.03 2.3 3.3

FTS

S

Y 11.4% 6.3% 17.7% 3.71 2.7 6.4

N 4.4% 1.9% 6.3% 0.01 1.0 1.0C

Y 5.7% 2.5% 8.2% 0.10 1.5 1.6

N 34.8% 14.6% 49.4% 0.30 8.2 8.5K

Y 38.0% 12.7% 50.6% 3.81 24.7 28.5

N 11.4% 3.8% 15.2% 0.28 6.3 6.6P

Y 12.0% 3.8% 15.8% 6.67 6.5 13.1

N 17.7% 10.8% 28.5% 0.16 7.4 7.6

Meili

S

Y 22.2% 12.7% 34.8% 3.58 7.5 11.1

N 3.8% 1.9% 5.7% 0.23 0.9 1.2C

Y 5.7% 1.3% 7.0% 0.51 1.2 1.7

N 32.9% 9.5% 42.4% 2.50 6.1 8.6K

Y 33.5% 12.7% 46.2% 10.52 16.6 27.2

N 10.8% 5.7% 16.5% 0.90 2.6 3.6P

Y 17.1% 5.1% 22.2% 8.90 3.2 12.1

N 14.6% 9.5% 24.1% 0.53 2.8 3.3

Type

S

Y 14.6% 10.8% 25.3% 4.34 3.0 7.3

Table 11: MultiDoc2Dial
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Gold P N 85.1% 9.1% 94.2% 0.01 1.6 1.6

None P N 1.7% 0.0% 1.7% 0.00 0.7 0.7

N 33.9% 4.1% 38.0% 0.24 1.0 1.3C

Y 33.9% 5.8% 39.7% 0.40 1.4 1.8

N 34.7% 1.7% 36.4% 0.41 8.5 8.9F

Y 35.5% 1.7% 37.2% 22.40 6.8 29.2

N 4.1% 5.8% 9.9% 1.61 0.9 2.5K

Y 1.7% 5.0% 6.6% 2.66 1.0 3.7

N 14.9% 1.7% 16.5% 0.24 0.9 1.2

Emb

S

Y 14.9% 3.3% 18.2% 0.33 0.9 1.3

N 0.8% 0.0% 0.8% 0.01 0.8 0.8C

Y 0.8% 0.0% 0.8% 0.01 1.0 1.0

N 18.2% 2.5% 20.7% 1.61 6.9 8.5K

Y 19.0% 3.3% 22.3% 6.64 9.6 16.2

N 26.4% 2.5% 28.9% 0.09 4.0 4.1P

Y 30.6% 1.7% 32.2% 1.90 4.5 6.4

N 24.0% 0.8% 24.8% 0.93 3.5 4.4

FTS

S

Y 31.4% 2.5% 33.9% 2.14 3.8 6.0

N 1.7% 0.8% 2.5% 0.01 1.0 1.0C

Y 1.7% 0.8% 2.5% 0.11 1.5 1.6

N 73.6% 5.0% 78.5% 0.25 9.4 9.6K

Y 66.1% 7.4% 73.6% 3.43 28.6 32.0

N 35.5% 3.3% 38.8% 0.21 9.6 9.8P

Y 38.8% 2.5% 41.3% 4.47 9.9 14.3

N 52.1% 5.0% 57.0% 0.12 7.2 7.3

Meili

S

Y 51.2% 5.0% 56.2% 2.53 7.5 10.1

N 0.8% 0.0% 0.8% 0.12 0.8 1.0C

Y 0.8% 0.8% 1.7% 0.30 1.2 1.5

N 54.5% 2.5% 57.0% 1.20 7.5 8.7K

Y 55.4% 5.8% 61.2% 6.45 25.2 31.7

N 28.1% 4.1% 32.2% 0.63 4.2 4.8P

Y 32.2% 2.5% 34.7% 4.49 4.4 8.8

N 47.1% 5.0% 52.1% 0.29 3.3 3.6

Type

S

Y 47.9% 4.1% 52.1% 2.17 3.7 5.9

Table 12: MultiFieldQA
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Gold P N 58.1% 2.1% 60.2% 0.01 2.7 2.7

None P N 8.4% 1.2% 9.6% 0.00 1.4 1.4

N 21.1% 1.2% 22.3% 0.22 1.7 1.9C

Y 21.2% 1.1% 22.4% 0.35 2.3 2.6

N 34.4% 2.0% 36.4% 0.51 15.2 15.7F

Y 34.6% 2.1% 36.8% 25.01 13.5 38.5

N 6.9% 1.6% 8.5% 1.46 1.4 2.8K

Y 5.4% 1.6% 7.0% 2.52 1.6 4.2

N 18.5% 1.0% 19.5% 0.23 1.5 1.7

Emb

S

Y 16.6% 1.4% 18.0% 0.32 1.5 1.8

N 7.0% 1.6% 8.6% 0.00 1.4 1.4C

Y 7.9% 1.4% 9.2% 0.01 1.9 1.9

N 19.7% 2.3% 22.1% 3.10 12.2 15.3K

Y 22.4% 2.9% 25.2% 6.72 13.2 19.9

N 24.8% 2.3% 27.1% 0.05 4.0 4.0P

Y 28.4% 2.0% 30.4% 1.23 4.7 5.9

N 29.3% 1.8% 31.2% 2.31 6.7 9.0

FTS

S

Y 32.5% 1.9% 34.4% 3.87 6.4 10.3

N 4.1% 0.1% 4.2% 0.01 1.3 1.3C

Y 3.6% 0.5% 4.1% 0.10 2.3 2.4

N 34.5% 3.2% 37.7% 0.25 14.0 14.2K

Y 37.4% 3.5% 40.9% 4.78 34.0 38.7

N 31.4% 2.8% 34.3% 0.17 12.2 12.3P

Y 32.9% 2.9% 35.8% 4.16 12.5 16.7

N 36.3% 3.2% 39.5% 0.12 11.6 11.7

Meili

S

Y 40.5% 1.6% 42.1% 2.71 11.6 14.3

N 1.7% 0.2% 2.0% 0.31 1.1 1.5C

Y 1.8% 0.1% 1.9% 0.70 1.5 2.2

N 36.9% 2.5% 39.3% 1.00 12.8 13.8K

Y 37.1% 2.9% 40.0% 5.69 47.2 52.9

N 33.7% 2.5% 36.1% 0.68 5.2 5.9P

Y 34.8% 2.2% 37.0% 3.51 5.4 8.9

N 38.3% 2.1% 40.4% 0.22 6.8 7.0

Type

S

Y 40.0% 1.8% 41.8% 2.10 7.1 9.2

Table 13: MuSiQue
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Gold P N 43.2% 5.3% 48.6% 0.03 2.4 2.4

None P N 1.4% 0.0% 1.4% 0.00 0.8 0.8

N 7.5% 2.3% 9.9% 0.23 1.1 1.3C

Y 7.1% 1.8% 8.9% 0.30 1.5 1.8

N 9.8% 1.1% 10.9% 0.50 7.5 8.0F

Y 13.8% 1.1% 14.9% 38.11 6.5 44.6

N 1.6% 1.2% 2.8% 1.35 0.9 2.3K

Y 1.0% 1.5% 2.5% 2.69 1.1 3.8

N 3.0% 1.1% 4.1% 0.23 1.0 1.2

Emb

S

Y 2.8% 1.2% 4.0% 0.46 1.0 1.4

N 1.6% 0.5% 2.1% 0.00 0.8 0.8C

Y 1.5% 0.0% 1.5% 0.01 1.0 1.0

N 1.7% 0.2% 2.0% 1.65 8.1 9.8K

Y 4.1% 0.5% 4.6% 6.45 9.1 15.6

N 6.7% 0.9% 7.6% 0.16 4.3 4.5P

Y 12.9% 2.2% 15.1% 3.39 6.0 9.4

N 4.8% 0.9% 5.7% 1.22 3.5 4.7

FTS

S

Y 8.6% 1.8% 10.4% 4.29 4.4 8.7

N 2.8% 0.2% 3.1% 0.01 1.0 1.0C

Y 2.6% 0.2% 2.9% 0.10 1.7 1.8

N 17.2% 3.5% 20.7% 0.35 9.2 9.5K

Y 17.8% 2.6% 20.4% 4.85 17.2 22.1

N 18.4% 2.1% 20.5% 0.23 8.5 8.7P

Y 17.8% 3.8% 21.5% 5.94 9.5 15.4

N 14.8% 2.1% 16.9% 0.16 7.6 7.8

Meili

S

Y 16.8% 1.9% 18.6% 3.77 8.6 12.4

N 1.8% 0.0% 1.8% 0.08 0.9 1.0C

Y 2.0% 0.0% 2.0% 0.24 1.3 1.6

N 12.7% 2.0% 14.7% 1.49 7.2 8.7K

Y 14.8% 2.6% 17.4% 9.39 25.3 34.7

N 15.3% 2.4% 17.7% 0.58 4.9 5.5P

Y 16.4% 2.5% 18.9% 6.93 5.3 12.3

N 14.4% 1.7% 16.2% 0.43 4.0 4.5

Type

S

Y 13.4% 1.5% 14.9% 4.51 4.8 9.3

Table 14: NarrativeQA
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Gold P N 66.4% 4.0% 70.4% 0.01 1.8 1.8

None P N 13.7% 3.7% 17.4% 0.00 1.0 1.0

N 31.9% 6.3% 38.2% 0.21 1.2 1.4C

Y 31.9% 5.4% 37.3% 0.30 1.6 1.9

N 47.6% 5.4% 53.0% 0.30 13.5 13.8F

Y 48.1% 5.7% 53.8% 10.09 12.0 22.1

N 5.7% 3.1% 8.8% 1.34 0.9 2.2K

Y 7.4% 2.8% 10.3% 2.60 1.1 3.7

N 27.9% 3.1% 31.1% 0.24 1.1 1.3

Emb

S

Y 24.5% 4.0% 28.5% 0.32 1.1 1.4

N 11.7% 2.3% 14.0% 0.00 1.0 1.0C

Y 12.3% 2.8% 15.1% 0.01 1.3 1.3

N 17.4% 3.4% 20.8% 1.65 9.1 10.8K

Y 18.8% 3.7% 22.5% 5.43 11.7 17.1

N 28.5% 3.7% 32.2% 0.12 8.1 8.2P

Y 38.5% 5.1% 43.6% 3.35 9.1 12.5

N 28.2% 3.7% 31.9% 1.04 6.0 7.0

FTS

S

Y 31.3% 2.8% 34.2% 3.64 7.2 10.9

N 4.8% 1.1% 6.0% 0.01 0.9 0.9C

Y 5.4% 1.7% 7.1% 0.11 1.5 1.6

N 49.0% 6.3% 55.3% 0.28 8.3 8.6K

Y 51.9% 5.7% 57.5% 3.92 13.7 17.6

N 35.3% 4.3% 39.6% 0.17 10.5 10.7P

Y 37.6% 5.7% 43.3% 4.37 11.2 15.6

N 41.6% 4.8% 46.4% 0.15 9.9 10.1

Meili

S

Y 44.7% 4.3% 49.0% 3.50 10.5 14.0

N 2.8% 0.6% 3.4% 0.11 0.8 0.9C

Y 3.7% 0.3% 4.0% 0.30 1.1 1.4

N 41.0% 5.7% 46.7% 1.04 8.5 9.5K

Y 47.9% 5.4% 53.3% 6.57 33.4 40.0

N 35.9% 3.7% 39.6% 0.41 7.8 8.2P

Y 35.6% 4.6% 40.2% 5.93 8.4 14.3

N 35.6% 4.8% 40.5% 0.29 6.2 6.5

Type

S

Y 34.5% 4.3% 38.7% 3.24 6.8 10.0

Table 15: Naturalquestion
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Gold P N 68.9% 15.9% 84.8% 0.00 1.6 1.6

None P N 0.2% 0.1% 0.4% 0.00 0.7 0.7

N 17.3% 9.1% 26.5% 0.21 1.2 1.4C

Y 17.6% 9.1% 26.8% 0.33 1.6 1.9

N 21.2% 7.1% 28.4% 0.40 10.1 10.5F

Y 22.0% 9.0% 31.0% 13.48 8.7 22.2

N 5.7% 3.8% 9.5% 1.60 1.0 2.6K

Y 5.5% 3.2% 8.8% 2.91 1.2 4.1

N 13.2% 6.7% 19.9% 0.22 1.0 1.2

Emb

S

Y 12.8% 6.1% 18.9% 0.32 1.1 1.4

N 2.1% 0.5% 2.6% 0.01 0.8 0.8C

Y 1.9% 0.8% 2.6% 0.02 1.1 1.1

N 10.7% 5.4% 16.1% 1.29 7.7 9.0K

Y 13.9% 6.1% 20.0% 6.27 13.4 19.6

N 14.6% 5.6% 20.2% 0.10 6.3 6.4P

Y 15.6% 6.0% 21.6% 2.40 6.9 9.3

N 13.3% 6.3% 19.6% 0.98 5.1 6.1

FTS

S

Y 12.8% 6.1% 18.9% 2.90 5.4 8.3

N 6.6% 4.1% 10.7% 0.01 1.4 1.4C

Y 6.8% 4.4% 11.1% 0.09 2.1 2.2

N 25.9% 10.0% 35.9% 0.16 7.5 7.6K

Y 26.6% 10.2% 36.9% 2.93 8.4 11.4

N 19.0% 7.4% 26.5% 0.12 10.3 10.4P

Y 20.5% 8.2% 28.7% 3.48 10.4 13.9

N 18.8% 8.8% 27.6% 0.07 7.3 7.4

Meili

S

Y 18.9% 7.2% 26.1% 2.13 7.1 9.3

N 6.1% 2.4% 8.5% 0.07 1.1 1.2C

Y 6.5% 2.8% 9.2% 0.22 1.5 1.7

N 23.0% 8.7% 31.7% 0.46 7.8 8.3K

Y 24.8% 7.5% 32.2% 3.78 20.9 24.7

N 16.8% 7.2% 24.0% 0.28 6.8 7.1P

Y 18.5% 7.0% 25.5% 3.90 7.0 10.9

N 19.8% 7.4% 27.2% 0.16 4.6 4.8

Type

S

Y 17.8% 7.0% 24.8% 1.80 4.7 6.5

Table 16: QASPER
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Gold P N 71.8% 0.7% 72.5% 0.01 1.6 1.6

None P N 4.3% 0.0% 4.3% 0.00 0.8 0.8

N 31.1% 0.1% 31.2% 0.23 1.2 1.4C

Y 29.6% 0.5% 30.1% 0.30 1.7 2.0

N 23.6% 0.1% 23.8% 0.57 6.2 6.8F

Y 28.9% 0.2% 29.1% 32.06 5.8 37.8

N 14.7% 0.1% 14.8% 1.61 1.0 2.6K

Y 15.1% 0.1% 15.2% 2.70 1.2 3.9

N 17.6% 0.1% 17.8% 0.26 1.2 1.5

Emb

S

Y 16.5% 0.1% 16.6% 0.33 1.0 1.4

N 4.9% 0.0% 4.9% 0.01 0.8 0.8C

Y 5.9% 0.1% 6.0% 0.01 1.1 1.1

N 11.0% 0.5% 11.5% 1.59 6.0 7.6K

Y 14.2% 0.6% 14.9% 8.32 22.1 30.4

N 5.6% 0.0% 5.6% 0.02 0.9 0.9P

Y 6.8% 0.2% 7.0% 0.30 1.1 1.4

N 7.8% 0.1% 8.0% 1.15 1.2 2.3

FTS

S

Y 8.0% 0.0% 8.0% 2.03 1.4 3.4

N 3.9% 0.4% 4.3% 0.01 0.9 0.9C

Y 5.1% 0.0% 5.1% 0.10 1.4 1.5

N 40.2% 0.4% 40.6% 0.38 9.1 9.5K

Y 44.4% 0.1% 44.5% 4.10 11.5 15.6

N 28.7% 0.4% 29.0% 0.25 7.3 7.5P

Y 28.5% 0.1% 28.6% 6.08 7.5 13.5

N 30.3% 0.4% 30.6% 0.12 5.8 6.0

Meili

S

Y 33.6% 0.5% 34.1% 3.33 6.3 9.6

N 3.6% 0.0% 3.6% 0.28 0.8 1.1C

Y 4.2% 0.1% 4.4% 0.64 1.2 1.8

N 32.2% 0.5% 32.7% 1.84 6.5 8.3K

Y 33.1% 0.4% 33.5% 9.99 20.5 30.5

N 16.8% 0.2% 17.0% 1.43 2.6 4.0P

Y 17.9% 0.2% 18.1% 7.29 2.8 10.0

N 24.4% 0.5% 24.9% 0.41 2.4 2.8

Type

S

Y 23.1% 0.4% 23.5% 3.25 2.6 5.9

Table 17: QuALTY
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Gold P N 88.9% 7.2% 96.1% 0.00 1.1 1.1

None P N 19.6% 3.1% 22.7% 0.00 0.8 0.8

N 63.0% 5.9% 68.9% 0.22 1.2 1.4C

Y 62.5% 6.1% 68.6% 0.30 1.6 1.9

N 53.6% 5.1% 58.8% 0.51 5.5 6.1F

Y 65.0% 5.8% 70.8% 22.86 5.2 28.0

N 22.0% 4.7% 26.7% 1.50 1.0 2.5K

Y 18.9% 4.0% 22.9% 2.50 1.1 3.6

N 52.2% 4.9% 57.1% 0.23 1.2 1.5

Emb

S

Y 52.6% 5.4% 58.0% 0.32 1.1 1.4

N 20.2% 3.2% 23.5% 0.01 0.8 0.8C

Y 19.9% 2.9% 22.8% 0.01 1.1 1.1

N 21.6% 3.4% 25.0% 1.64 5.0 6.7K

Y 21.9% 3.5% 25.4% 7.95 18.8 26.8

N 19.0% 3.6% 22.6% 0.00 0.9 0.9P

Y 17.5% 3.8% 21.2% 0.01 1.0 1.0

N 20.3% 3.4% 23.7% 1.13 1.1 2.2

FTS

S

Y 19.4% 2.9% 22.2% 2.40 1.4 3.8

N 1.9% 0.2% 2.1% 0.01 0.7 0.7C

Y 2.9% 0.4% 3.2% 0.10 1.3 1.4

N 45.2% 5.6% 50.8% 0.33 7.0 7.3K

Y 46.6% 6.4% 53.0% 4.42 13.4 17.8

N 20.6% 3.0% 23.6% 0.28 5.2 5.5P

Y 20.4% 3.0% 23.4% 7.96 4.8 12.8

N 28.5% 3.9% 32.3% 0.17 6.0 6.2

Meili

S

Y 31.4% 4.6% 36.0% 4.56 6.3 10.9

N 1.4% 0.2% 1.6% 0.30 0.8 1.1C

Y 1.8% 0.4% 2.1% 0.68 1.1 1.7

N 41.2% 5.4% 46.6% 1.79 6.3 8.0K

Y 45.6% 5.0% 50.6% 10.54 20.1 30.6

N 20.7% 3.9% 24.6% 2.06 3.1 5.2P

Y 20.0% 4.1% 24.1% 7.13 3.3 10.4

N 25.0% 3.9% 28.8% 0.53 2.0 2.5

Type

S

Y 24.5% 3.5% 28.0% 3.65 2.7 6.3

Table 18: TOEFL-QA
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A.5 Search Engine Hyperparameters

This section lists the effective document-processing and ranking settings that affect retrieval 

results in the experiment implementation. In most cases, default settings were used. Only a 

small number of settings were explicitly set by the implementation (listed below).

• Explicit (non-default or implementation-defined) settings:

‣ Top-k: k = 10 for all search engines and retriever variants.

‣ No dataset filtering was applied at query time (all queries run against the full combined 

corpus).

‣ SQLite FTS query normalization: lowercase + extract Unicode word tokens via regex \w+.

‣ Chunking for chunk indices/collections: max 512 characters, 50 characters overlap, prefer 

sentence boundaries.

‣ pgvector: cosine distance search over halfvec(2560) embeddings with an HNSW index 

(without explicit HNSW parameter overrides).

• SQLite Full-Text Search (FTS5 + BM25):

‣ Index schema (full documents): CREATE VIRTUAL TABLE content_fts USING fts5(content, 

content_id);

‣ Index schema (chunks): CREATE VIRTUAL TABLE content_fts_chunks USING fts5(chunk, 

content_id UNINDEXED, chunk_index UNINDEXED, dataset UNINDEXED);

‣ Query preprocessing: the query is converted into a whitespace-separated list of lowercase 

Unicode word tokens using the regex \w+ (i.e., punctuation is removed).

‣ Tokenizer/stopwords/stemming/synonyms: no explicit tokenizer, stopword list, stemming, 

or synonym configuration was applied. This means the defaults from the engine were used.

‣ Ranking: results are ordered by the FTS5 built-in rank column (default BM25 ranking), 

ascending.

• pgVector (PostgreSQL + pgvector):

‣ Docker image: pgvector/pgvector:pg18-trixie

‣ Reported Version: PostgreSQL 18.0 (Debian 18.0-1.pgdg13+3) on x86_64-pc-linux-gnu, 

compiled by gcc (Debian 14.2.0-19) 14.2.0, 64-bit

‣ pgVector version: 0.8.1

‣ Embedding model: Qwen3-4B embeddings with 2,560 dimensions; stored as halfvec(2560).

‣ Similarity metric: cosine distance (<=> operator).

‣ Approximate Nearest Neighbor (ANN) index: CREATE INDEX ... USING hnsw (embedding 

halfvec_cosine_ops).

‣ HNSW parameters (m, ef_construction, ef_search): not explicitly set in the implemen

tation (engine defaults for the used pgvector version).

• Typesense:

‣ Docker image: typesense/typesense:29.0

‣ Version: 29.0
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‣ Schema (full documents): content (string), dataset (string, facet), content_id (int32)

‣ Schema (chunks): chunk (string), dataset (string, facet), content_id (int32), chunk_index 

(int32)

‣ Query parameters: q = <query>, query_by = content (or chunk), per_page = 10

‣ Tokenization/stopwords/stemming/synonyms and ranking settings: no custom configura

tion was applied, using the defaults.

• Meilisearch:

‣ Docker image: getmeili/meilisearch:v1.22.3

‣ Version: 1.22.3, commit c36a3239ca387ae662e13ebea697919ca04e5c75

‣ Index setup: primary key id; documents contain content (or chunk), dataset, content_id

‣ Query parameters: q = <query>, limit = 10

‣ Tokenization/stopwords/stemming/synonyms: no custom configuration was applied (en

gine defaults).

‣ Ranking: Meilisearch default ranking rules were used (no custom ranking rule order).
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