
Master-Thesis

Vergleichende Analyse von Retrieval-Augmented

Generation (RAG) Methoden: Embedding- vs.

Volltext-basierte Ansätze

Submitted by: Konrad Langenberg

Department: Elektrotechnik und Informatik

Degree program: Informatik / Softwaretechnik für verteilte Systeme

First examiner: Prof. Dr.-Ing. Max Zimmermann

Issue Date: 14th July 2025

Submission Date: 14th January 2026

Task description

Retrieval-Augmented Generation (RAG) hat sich als vielversprechender Ansatz zur

Verbesserung der Leistung von Large Language Models (LLMs) durch Integration externer Wis

sensquellen etabliert. Klassische RAG-Implementierungen nutzen dafür Vektor-Datenbanken

und Embeddings für den semantischen Zusammenhang von Frage und Antwort, um Inhalte

möglicher Antworten im zweiten Schritt an ein LLM zur Generierung der Antwort zu übergeben.

Die Erstellung dieser Embeddings ist im Vergleich zu klassischen Datenbank-Indizes relativ

aufwändig und ressourcenintensiv. Das Verfahren hat sich aber in der Praxis durchgesetzt, da

es wesentlich effizienter als Finetuning ist.

Alternative Ansätze, wie die Nutzung von etablierten Methoden der Volltext-Suche, könnten

diesen Prozess vereinfachen. Bislang fehlen jedoch eine systematische Untersuchung und ein

Vergleich dieser unterschiedlichen Ansätze.

In der Masterarbeit soll die Hypothese untersucht werden, dass Volltext-such-basierte RAG-

Ansätze in bestimmten Anwendungsfällen eine vergleichbare Leistung zu Embedding-basierten

Methoden erzielen können, bei gleichzeitig geringerem Implementierungsaufwand.

Zur Beantwortung der Hypothese soll ein Benchmark, der verschiedene RAG-Varianten (e.g.

mit und ohne Embeddings, verschiedene Suchstrategien etc.) vergleicht, durchgeführt werden.

Die unterschiedlichen RAG-Implementierung werden gezielt evaluiert und anhand geeigneter

Kriterien ausgewertet.

i

Eigenständigkeitserklärung
Declaration of Originality

Name, Vorname Matrikelnummer
Last name, first name Matriculation number

Ich versichere hiermit, dass ich die vorliegende
I hereby declare that this

□ Hausarbeit □ Bachelorarbeit □ Masterarbeit
term paper bachelor‘s thesis master‘s thesis

mit dem Titel
with the title

eigenständig und ohne unerlaubte fremde Hilfe angefertigt habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet und Entlehnungen aus anderen
Arbeiten kenntlich gemacht. Für den Fall, dass die Arbeit zusätzlich elektronisch und/ oder
digital eingereicht wird, erkläre ich, dass die schriftliche und die elektronische und/ oder
digitale Form identisch sind. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

is my own original work and any assistance from third parties has been acknowledged. I have clearly indicated and acknowl-
edged all sources and resources as well as any borrowings from other works. In case of an additional electronic and/or digi-
tal submission of this work, I declare that the written form and the electronic and/or digital form are identical. This work
has not previously been submitted either in the same or in a similar form to another examination office.

Ich bin damit einverstanden, dass die vorliegende Hausarbeit/ Bachelorarbeit/Masterarbeit
für Veröffentlichungen, Ausstellungen undWettbewerbe des Fachbereiches verwendet und
Dritten zur Einsichtnahme vorgelegt werden kann.

I agree that this work can be used for publishing, exhibition or competition purposes and can be inspected by third parties.

□ ja □ nein □ es liegt ein Sperrvermerk bis _______________vor
Yes no there is an embargo period until

Ort, Datum Unterschrift
Place, Date Signature

Langenberg, Konrad 367536

Vergleichende Analyse von Retrieval-Augmented Generation (RAG) Methoden

Lübeck, 11.01.2026

ii

Erklärung zur KI-Nutzung

Bei der Anfertigung dieser Masterarbeit kamen generative KI-Werkzeuge zum Einsatz. Die ver

wendeten Tools umfassen ChatGPT (OpenAI), Claude (Anthropic) sowie Gemini (Google). Die

Nutzung erfolgte ausnahmslos im Bereich der Textoptimierung: Verbesserung von Formulierun

gen, Prüfung von Grammatik und Rechtschreibung sowie stilistische Anpassungen, ebenso die

Erstellung von Programmcode. Die wissenschaftlichen Inhalte, Fragestellungen, Analysen und

Erkenntnisse dieser Arbeit sind vollständig meine eigene geistige Arbeit.

iii

Abstract of the thesis

Department: Elektrotechnik und Informatik

Degree program: Informatik / Softwaretechnik für verteilte Systeme

Subject: Vergleichende Analyse von Retrieval-Augmented Generation (RAG)

Methoden: Embedding- vs. Volltext-basierte Ansätze

Abstract: This thesis investigates whether full-text search can serve as a viable

alternative to embedding-based approaches in Retrieval Augmented

Generation (RAG) systems. The primary motivation stems from the

computational and operational overhead of generating and maintain

ing embedding indices, whereas full-text search leverages established

indexing technology.

A comparative experiment was conducted using 6,284 questions

from 11 datasets across four search engines (pgVector, BM25,

Meilisearch, Typesense), each tested with different query preprocess

ing strategies including query rewriting and keyword generation. An

automated Model-as-a-Judge approach rated responses against known

correct answers.

The results demonstrate that full-text search can outperform

embedding-based retrieval when combined with query reformulation.

The best full-text configuration achieved 40.44% correctness com

pared to 31.19% for the best embedding-based approach, though

performance varied considerably across datasets.

These findings suggest that full-text search with appropriate query

preprocessing constitutes a practical alternative to embedding-based

RAG, offering reduced complexity and improved retrieval accuracy.

Results may differ with other model configurations.

Author: Konrad Langenberg

Supervising pro

fessor:

Prof. Dr.-Ing. Max Zimmermann

WS / SS: Wintersemester 2025

iv

Contents

Contents
1 Introduction . ⁠1

2 Related Work . ⁠3

2.1 RAG origins . ⁠3

2.2 Architecture of a Retrieval Augmented Generation (RAG) system ⁠4

2.3 Embeddings . ⁠5

2.4 Injecting knowledge into an Large Language Model (LLM) through fine-tuning and

related approaches . ⁠6

2.5 Improving the Retrieval Process . ⁠7

2.5.1 Tool use . ⁠8

2.5.2 Using graph data structures . ⁠8

2.5.3 Reducing the need for retrieval . ⁠10

2.5.4 Building better retrieval methods . ⁠11

2.5.5 Reranking . ⁠12

2.5.6 Iteratively improving RAG results . ⁠15

2.6 Search approaches and algorithms . ⁠15

2.7 Benchmarking RAG systems . ⁠16

2.8 Conclusion . ⁠17

3 Method and Experiment Architecture . ⁠18

3.1 Dataset Construction and Filtering . ⁠18

3.2 Model Selection . ⁠22

3.3 Experiment Architecture . ⁠22

3.3.1 Search Engines . ⁠23

3.3.2 Retriever Types . ⁠24

3.3.3 Chunking Strategy . ⁠24

3.4 Reranking . ⁠25

3.5 Evaluation . ⁠26

3.6 Experimental Infrastructure . ⁠27

3.7 Key Considerations and Limitations . ⁠27

4 Results . ⁠28

4.1 Overall Performance Across Search Engines . ⁠28

4.1.1 Best Embedding vs. Full-Text Search . ⁠31

4.1.2 Statistical Significance . ⁠34

4.1.3 Document Recall . ⁠35

4.2 Timing Analysis . ⁠36

4.3 Performance by Dataset . ⁠39

4.4 Top 3 Configurations by Dataset . ⁠39

4.4.1 Baseline Performance With Perfect Retrieval . ⁠43

v

Contents

4.4.2 Baseline Performance Without Retrieval . ⁠44

4.5 Overlap in Correctly Retrieved Documents Between Search Engines ⁠45

4.6 Conclusion . ⁠47

5 Discussion . ⁠48

5.1 Full-Text Search Performance Compared to Embeddings . ⁠48

5.2 Dataset-Specific Performance Variation . ⁠49

5.3 Reranking Effects . ⁠50

5.4 Timing Implications . ⁠50

5.5 Failures of Chunk-Based Retrieval with Full-Text Search . ⁠51

5.6 Document Recall and Generation Failure . ⁠51

5.7 Retrieval Dependency per Dataset . ⁠52

5.8 Potential for Hybrid Retrieval . ⁠53

5.9 Assessment and Recommendations . ⁠53

5.9.1 Trade-offs Between Accuracy and Efficiency . ⁠54

5.9.2 Context-Dependent Recommendations . ⁠54

5.9.3 Dataset-Specific Considerations . ⁠54

5.9.4 Limitations and Caveats . ⁠55

5.9.4.1 Single Model Dependency . ⁠55

5.9.4.2 Evaluation Methodology . ⁠55

5.10 Conclusion . ⁠56

6 Conclusion . ⁠56

6.1 Key Findings . ⁠56

6.2 Future Work . ⁠57

A Appendix . ⁠I

A.1 Answer Prompt . ⁠I

A.2 Query rewriting prompts . ⁠I

A.2.1 Search Query Prompt . ⁠II

A.2.2 Keyword Prompt . ⁠II

A.3 Evaluation Prompt . ⁠III

A.4 Search Engine Results by Dataset . ⁠V

A.5 Search Engine Hyperparameters . ⁠XI

B List of Figures . ⁠XIII

C List of Tables . ⁠XIV

D List of Acronyms . ⁠XVI

E Bibliography . ⁠XVII

vi

Introduction

1 Introduction
Large Language Models (LLMs) are trained on text corpora collected up to a specific cutoff date,

which means they lack knowledge about events and information that occurred after this cutoff

date. To extend the knowledge of LLMs with new information or domain-specific knowledge

outside of the trained parametric memory, Retrieval Augmented Generation (RAG) has become

the established approach to incorporate this knowledge into LLM responses.

RAG works by performing a search in a database based on the user’s query to find relevant

documents that might contain the answer to the question. These documents are then provided to

the LLM, which generates an answer using the retrieved information. Research has shown that

this approach performs significantly better than alternatives like fine-tuning, where additional

knowledge is added to the model by retraining parts of it. RAG is also more flexible since only

the knowledge corpus in the database needs to be updated, rather than fine-tuning an entire

model each time. This is particularly important for data that changes regularly and needs to

be updated frequently in the LLM.

However, the retrieval pipeline1 introduces considerable complexity to make a RAG system

work reliably. Today, vector embeddings are most commonly used in practice for retrieval,

because of their ability to search for semantically similar documents based on a user query.

Using an embeddings-based approach requires maintaining a pipeline to keep these embeddings

up-to-date. This means developers face mostly classical engineering challenges around large-

scale data and database management, rather than AI-specific problems like training models.

This raises the question: can RAG systems work effectively without using embeddings?

After all, the core task is just finding the right documents, which should be possible without

embeddings. Full-text search has existed for a long time and is supported by many databases.

It naturally comes to mind when thinking about retrieving documents based on a user query.

While databases need to perform indexing to enable full-text search, which is similar to

having to maintain embeddings, the overall complexity is much lower. A database optimized

for full-text search handles indexing and the creation of search indexes all by itself. This makes

using these databases much less complex compared to building an embeddings pipeline where

embeddings need to be kept up to date.

An embeddings pipeline usually consists of one data store where the actual content is located

in human-readable text and another one where the embeddings are stored. The text content

(not the embedding vectors) needs to be stored to pass it to the LLM to generate the response.

To make the content searchable via text embeddings, the content has to be processed. First, it

needs to be divided into useful chunks2, then the embeddings need to be generated for them.

1The component responsible for finding the right documents from the database.
2Because embedding vectors can only capture a limited amount of tokens, text needs to be split into multiple

smaller chunks to not overwhelm the embedding model.

1

Introduction

Creation of embeddings uses specialized embedding models. Most of the time these are hosted

externally and accessed using APIs, with the providers charging for usage.

Finally, embeddings have to be stored in a format that makes it possible to search through

them.

When searching in an embeddings database, embeddings need to be generated first for the

input search query. These embeddings are then used to search in the database. Combined, all

of these steps increase resource usage and response times of the overall application.

With a full-text database, the system only needs to add content to the database – and this

requires the same effort as with embeddings since the content needs to be stored in a human

readable format even when using embeddings. To search in the stored document corpus, only

a search query is required. This can be the input query directly from the user or a transformed

query. The database completely handles the index, developers only access the search function

ality. As a result, the overall system is less complex with a full-text database compared to an

embeddings-based approach.

Both full-text search and embedding-based approaches require the same preprocessing

pipeline: document retrieval, parsing, and database storage. The operational complexity for

the preprocessing pipeline remains equivalent across both methods. However, full-text search

offers a more straightforward implementation path for indexing content compared to the vector

embedding approach.

Best Matching 25 (BM25) [1] has been the standard search algorithm for years, but newer

databases like Typesense and Meilisearch now offer full-text search with different ranking

algorithms. Since BM25 is the established approach, it’s worth investigating whether it should

still be used or if alternatives might perform better in a RAG setting.

The core contribution of this thesis is examining whether RAG can be done effectively without

embeddings and if it produces good results.

To answer this question, an experiment was designed which performs RAG tasks with different

search methods on multiple datasets. To establish baseline results, a None retriever condition

was tested in which the LLM has to generate an answer without any retrieved text input, relying

only on its internal parametric memory. These datasets are pre-filtered and were constructed

in [2] by filtering with the GPT-4o LLM from OpenAI to obtain questions that an LLM cannot

answer from its parametric memory. Most of these are Question Answering (QA) tasks that

aim to mimic typical chat applications. Other use cases like agents are out of scope and are

topics for future research.

The remainder of this thesis is structured as follows: First, Section 2 reviews current research

approaches on RAG, followed by Section 3 detailing the experimental design and implementa

tion. Section 4 reports the obtained results, followed by Section 5, which interprets the findings

and addresses the research question. Finally, Section 6 concludes the thesis with key takeaways.

2

Related Work

2 Related Work
Current research in the area of RAG tends to focus on two topics: The improvement of how

LLMs understand and process knowledge and methods to improve the retrieval of information

for usage in RAG. Since the public release of ChatGPT in late 2022, many papers have been

published in this field - it is very much an active area of research.

This chapter describes related work and current research areas to improve RAG. In

Section 2.1, the origins of the RAG paradigm are described, followed by a general architecture

overview in Section 2.2, leading up to a brief explanation of embeddings in Section 2.3,

Section 2.4 explores knowledge injection through fine-tuning and related approaches. Section 2.5

examines research focused on improving the retrieval process. Section 2.6 presents fundamental

search algorithms, and finally Section 2.7 discusses approaches for evaluating RAG systems.

2.1 RAG origins

The term RAG was coined in the seminal paper by Lewis et al. in 2021 [3]. They introduced

the method as a hybrid approach that combines pre-trained parametric memory embedded in

a BART language model at the time, with non-parametric memory (dense vector retrieval of

content, in the case of the paper text content from Wikipedia) to improve performance on

knowledge-intensive Natural Language Processing (NLP) tasks. The language model, which

marginalizes over retrieved documents during generation, achieved state-of-the-art results on

open-domain question answering, reduced hallucination compared to purely parametric models,

and demonstrated the ability to update knowledge by simply replacing the retrieval index

without retraining. Two variants were proposed: RAG-Sequence, which uses the same retrieved

document for the entire output sequence, and RAG-Token, which can utilize different documents

for each generated token. They showed that this approach hallucinates less while being more

factually correct than other approaches. Factual correctness was verified using FEVER, a fact-

check benchmark [3].

They also found that the quality of the given response ultimately depends on the quality of

the retrieved documents. This is still true today.

Their research introduced a new way to update a model’s knowledge without having to re-

train it fully or fine-tune parts of it - a process which is expensive and needs a lot of resources.

While many improvements have been made to the way a RAG-System works since the paper

was published, modern RAG-Systems look a lot like the one originally proposed.

The different architectures have been presented by Gao et al. in a comprehensive survey of

RAG techniques for Large Language Models [4]. They categorize the evolution of the pattern

into three paradigms: Naive RAG (basic retrieve-read framework, as outlined in Section 2.2),

Advanced RAG (incorporating pre- and post-retrieval optimizations), and Modular RAG

(flexible architectures with specialized components).

3

Related Work

The analyzed studies demonstrate that RAG effectively mitigates LLM limitations such as

hallucination and outdated knowledge while generally outperforming fine-tuning approaches for

knowledge-intensive tasks.

RAG presents a way to add new or external knowledge to an LLM without having to retrain

or fine-tune the model, which makes these systems very interesting for a variety of use-cases.

The most obvious is question-answering systems which can reply to a wide variety of user

questions, but also chatbots, creating documents or generating software code.

2.2 Architecture of a RAG system

On a high level, a RAG system consists of two parts:

1. A retriever which fetches text content based on a user query

2. A generator which uses the retrieved content to generate a response to the query.

Formally, a RAG system can be expressed as follows:

𝐷𝑟 = 𝑅(𝐷, 𝑞)

𝑎 = 𝐺(𝑞, 𝐷𝑟)

Where 𝑅 is a retriever function which, given a user query 𝑞 and a set of documents 𝐷, retrieves

relevant documents 𝐷𝑟. The relevant documents 𝐷𝑟 are then passed to the generator function

𝐺 along with the original query 𝑞 to produce the final answer 𝑎. The generator is in almost all

cases an LLM being called with a special prompt to produce an answer.

Figure 1 shows an overview of what such a system looks like on a high level.

User Query
(q)

Documents

(D)

Retriever

(R)

Generator

(G)

Answer

(a)

Relevant

Documents

(D𝑟)

Figure 1: A general definition of a RAG System, combining documents 𝐷 and a user query 𝑞 with a

retriever 𝑅 and a generator 𝐺 to produce an answer to a query 𝑎.

The system is opaque to the way the retriever works under the hood. The retriever can be

a simple keyword-based search engine, a more complex embedding-based search engine, or a

combination of both.

The quality and relevance of the retrieved documents are highly important for the quality of

the response to the user query.

4

Related Work

Practitioners are expressing this as “If you want to make a good RAG tool […], you should

start by making a search engine over those documents that would be good enough for a human

to use themselves.” [5]

Plenty of research is currently being conducted to improve the search process so that the

LLM used to generate the response has the most relevant content it needs to give an accurate

response to the user query.

2.3 Embeddings

Retrieving content happens mostly by using text embeddings in industry practice today. With

embeddings, all text content is first transformed into a high-dimensional vector representation

which captures its semantic meaning. These vectors can then be searched for similarity to the

input query using cosine distance or similar methods, returning only those pieces of content

semantically similar to the input query.

Neelakantan et al. demonstrated that embeddings produced by pre-training on unsupervised

data produce high-quality text and code embeddings [6] which can then be used to retrieve text

based on semantic similarity.

Nussbaum et al. present nomic-embed-text-v1 [7], the first fully reproducible long-context text

embedding model that achieves competitive performance with only 137 million parameters and

8192 token context length. The model employs a three-stage training pipeline using architectural

modifications to Bidirectional encoder representations from transformers (BERT). It demon

strates superior performance to OpenAI’s text-embedding-ada-002 and text-embedding-3-small

on both short-context (MTEB) and long-context (LoCo) benchmarks. Notably, the authors

release all training artifacts including curated datasets, training code, and model weights,

addressing the lack of transparency in existing high-performing embedding models.

The same authors also introduce Nomic Embed v2 [8], the first general-purpose Mixture

of Experts (MoE) text embedding model, addressing the efficiency challenges of scaling

multilingual embedding models. Traditionally, these embedding models require 3-5x more

parameters than monolingual counterparts to achieve comparable performance. The model uses

an adapted XLM-RoBERTa architecture with 8 experts and top-2 routing, training on 1.6

billion high-quality pairs, resulting in 475M total parameters with 305M active during inference.

Experimental results demonstrate that the MoE approach outperforms similarly-sized dense

models on both monolingual (BEIR) and multilingual (MIRACL) benchmarks. This work

represents a fundamental shift from previous scaling approaches that relied solely on increasing

dense model capacity.

While embeddings are very useful for RAG systems, their main downside is the resource

intensive process of creating and keeping them up to date since in all cases this needs expensive

AI-infrastructure to either host a model or use a provider to access embedding models via

an API. When building these systems outside of lab tests, a considerable amount of software

5

Related Work

engineering has to be done to build the overall system in a way that ensures information is kept

up to date and embeddings are created for all text in the system.

2.4 Injecting knowledge into an LLM through fine-tuning and related

approaches

Before the original RAG paper was published, Lauscher et al. [9] investigated adapter-based

knowledge injection into BERT using bottleneck adapters rather than full model fine-tuning to

avoid catastrophic forgetting3 of distributional knowledge.

While overall GLUE benchmark results showed limited improvements, the trained models

demonstrated substantial performance gains on inference tasks requiring factual world knowl

edge and named entity information, but performed worse on tasks which required common

sense reasoning. The authors concluded that explicit knowledge injection is effective for factual

information but insufficient for complex reasoning tasks.

Similarly, Wang et al. proposed K-ADAPTER [11], a framework for injecting knowledge

into pre-trained language models by keeping the original model parameters frozen and training

compact knowledge-specific adapters independently. This improves upon previous methods

where the resulting model would lose previously learned knowledge during fine-tuning.

Newer research by Ovadia et al. systematically compared unsupervised fine-tuning and RAG

for knowledge injection in LLMs [12]. They evaluated three 7B-parameter models across MMLU

benchmark tasks and a custom current events dataset containing information beyond the

models’ training cutoff4. Their findings demonstrate that RAG consistently outperforms fine-

tuning for both previously encountered and entirely new knowledge. The authors attribute this

superiority to RAG’s ability to provide relevant context alongside factual information while

avoiding the catastrophic forgetting that can occur during fine-tuning. The study also reveals

that LLMs struggle to internalize new factual information through unsupervised fine-tuning

alone, though exposing models to multiple paraphrased variations of the same facts during

training shows promise for improving knowledge retention.

Combining both approaches, Zhang et al. [13] propose RAFT (Retrieval-Augmented Fine

Tuning), a new training strategy that fine-tunes LLMs for domain-specific RAG. The method

trains models on question-answer pairs where some training instances include “golden” docu

ments which contain the answer along with distractor documents, while others contain only

distractors, teaching the model which documents from a retrieval set are relevant for answering

a question. RAFT then generates chain-of-thought style answers with verbatim citations from

relevant documents. Experiments across different benchmarks demonstrate that RAFT consis

tently outperforms standard supervised fine-tuning approaches.

3Catastrophic forgetting is a phenomenon where an LLM forgets factual information it was originally trained
on when it is fine-tuned for other tasks. [10]

4The training cutoff is the date when no more training data was collected and model training was started.
Without relying on external sources, LLMs don’t have any knowledge about events that happened beyond that
training cutoff date.

6

Related Work

Borgeaud et al. introduced RETRO (Retrieval-Enhanced Transformer) [14], a semi-paramet

ric language model that conditions on document chunks retrieved from a 2 trillion token

database using frozen BERT embeddings and a chunked cross-attention mechanism. This

approach is similar to RAG in that it uses a retrieval mechanism to augment a language model,

but it integrates retrieval directly into the transformer architecture rather than as a separate

step. In comparison with RAG, RETRO slightly outperforms it (45.5 accuracy of RETRO vs

44.5 accuracy of RAG).

Despite using 25x fewer parameters than GPT-3, RETRO achieves comparable performance

on benchmarks like the Pile and Wikitext103, demonstrating that retrieval from massive-

scale databases can effectively decouple computational scaling from model memorization. The

approach shows consistent improvements across model sizes (150M-7B parameters) and can be

retrofitted to existing models, while also reducing hallucinations and improving factual accuracy

compared to purely parametric models.

In summary, the research results presented in this section indicate that it does not make much

sense to pursue fine-tuning as a viable alternative to RAG, since it is less flexible and yields

worse results than RAG. Even though Lauscher et al. and K-ADAPTER demonstrated better

performance of their fine-tuning approach, they only compared a fine-tuned model with a vanilla

BERT model, whereas current state-of-the-art LLMs are more complex and have significantly

more parameters.

2.5 Improving the Retrieval Process

As established in earlier sections, to achieve good results with a RAG system, the quality and

relevance of the retrieved documents are most important for the quality of the overall response.

Therefore, it makes sense to focus on improving the retrieval part of a RAG system. This section

and its subsections explore current research in this area.

Anthropic have proposed a way to enrich RAG-content by prepending chunk-specific explana

tory content to document chunks before creating embeddings. They call this pattern Contextual

Retrieval [15]. This addresses the problem of chunks lacking sufficient context for accurate

retrieval.

The method automatically generates contextual information based on the full document using

an LLM and reduces top-20 chunk retrieval failure rates by 49% when combining the resulting

embeddings with Contextual BM25 (from 5.7% to 2.9%), and achieves a 67% reduction (to

1.9%) when further combined with reranking.

The study demonstrates that combining semantic embeddings with lexical matching (BM25),

adding contextual information to chunks, and implementing reranking all contribute additively

to retrieval performance improvements across multiple knowledge domains.

7

Related Work

2.5.1 Tool use

Tool use refers to the capability of LLMs to invoke external functions that extend their base

functionality. State-of-the-art LLMs are trained to identify appropriate tools for a given task

and generate structured function calls accordingly. If the LLM wants to use a tool, it outputs a

tool invocation request, which the host application executes externally. The tool results are then

provided back to the LLM as context, enabling it to generate a final response that incorporates

the result of the function execution.

Toolformer [16] introduces this pattern in a self-supervised approach for training language

models to use external tools through API calls. The method uses in-context learning before fine-

tuning the model on a dataset filtered by those API calls. Experimental results show that the

resulting model, based on a 6.7B parameter GPT-J model, significantly outperforms baseline

models and even much larger models like GPT-3 on mathematical reasoning, factual knowledge

retrieval, and multilingual tasks while preserving core language modeling capabilities. The

approach demonstrates that language models can learn to autonomously decide when and how

to leverage external tools in zero-shot settings, though it is limited to single API calls per input.

Combining reasoning with tool use, Yao et al. introduce ReAct [17], a prompting paradigm

that enables large language models to interleave verbal reasoning traces with task-specific

actions. The approach combines the benefits of chain-of-thought reasoning with external envi

ronment interaction, using a simple Wikipedia API for knowledge-intensive tasks. ReAct consis

tently outperforms both reasoning-only and action-only baselines while providing enhanced

interpretability and reduced hallucination compared to standard chain-of-thought approaches.

The method’s effectiveness extends to fine-tuning scenarios, where ReAct demonstrates superior

performance even with smaller models and limited training data, suggesting its potential as a

foundation for integrating reasoning capabilities with external knowledge retrieval.

This shows an interesting direction for infusing new knowledge into existing language models

at runtime by providing a search function which can be used like a search engine, making this

a worthwhile area to explore for RAG systems.

2.5.2 Using graph data structures

LightRAG [18] addresses limitations of traditional retrieval-augmented generation systems

by incorporating graph structures into text indexing and retrieval processes. They use large

language models to extract entities and relationships from documents to construct knowledge

graphs that capture the dependencies between information sources.

The system employs a dual-level retrieval paradigm which combines low- and high-level

retrieval for narrower and broader topics, to better answer specific and abstract queries. Exper

imental evaluation across multiple datasets from the UltraDomain benchmark demonstrates

that LightRAG consistently outperforms baseline RAG methods, particularly on datasets where

baseline methods struggle to synthesize information across multiple document sources.

8

Related Work

Going in a similar direction, Fatehkia et al. present Tree-RAG (T-RAG) [19], a system

that combines Retrieval-Augmented Generation with a fine-tuned Llama-2 7B model and a

novel tree-based context component. The tree structure specifically addresses hierarchical entity

relationships within organizations, which traditional RAG and knowledge graph approaches

handle poorly. In human evaluations on 37 questions from organizational documents, T-RAG

achieved 73% correct responses compared to 56.8% for standard RAG and 54.1% for fine-tuning

alone, though the limited evaluation scale raises questions about the broader generalizability of

these improvements.

Sepasdar et al. introduce Structured-GraphRAG [20], a framework that enhances RAG

systems by automatically constructing knowledge graphs from structured datasets, specifically

demonstrated using soccer data from the SoccerNet dataset. Unlike traditional GraphRAG

approaches that require domain experts to design knowledge graphs, the researchers developed

an automated method for transforming structured tabular data into graph representations. The

system operates through a four-step process: knowledge graph construction, query translation

(converting natural language to Cypher queries), information retrieval from the graph data

base, and answer generation using GPT-3/GPT-4 models. Evaluation on soccer data showed

significant performance improvements over traditional RAG methods, achieving 64% accuracy

compared to 36% for baseline approaches, while also demonstrating substantial execution time

reductions.

While demonstrated on soccer data, the methodology is designed to be domain-agnostic and

applicable to any structured dataset organized in tabular format, though the evaluation was

conducted with a limited scope of 10 questions tested across 5 iterations each.

Their study shows that RAG systems dealing with structured data rather than text-only

content can benefit from graph-based representations to better capture relationships and

dependencies within the data, ultimately improving RAG results.

Extending graph-based RAG from structured tables to unstructured corpora, HippoRAG

[21] introduces a neurobiologically inspired retrieval layer that treats a schemaless OpenIE

knowledge graph as a hippocampal-style index for long-term memory in LLMs.

In contrast to other graph-based RAG methods, HippoRAG does not need corpus data to

be in a graph format, but constructs a knowledge graph from unstructured text using OpenIE.

During retrieval, it runs a Personalized PageRank algorithm over the graph to find relevant

passages. Empirically, HippoRAG achieves sizable gains on multi-hop QA while being 6-13x

faster and 10-30x cheaper than strong retrievers. The approach is unsupervised, incrementally

updatable, and particularly effective for “path-finding” queries that require linking dispersed

facts.

The presented studies indicate that using graph data structures rather than text-only

approaches can yield better results when the underlying data benefits from structured repre

sentation and hierarchical relationships are important.

9

Related Work

2.5.3 Reducing the need for retrieval

Jiang et al. introduce Forward-Looking Active REtrieval augmented generation, FLARE [22],

a method that enhances retrieval-augmented language models by actively deciding when and

what to retrieve during generation, addressing the limitations of single-time retrieval approaches

in long-form text generation tasks. FLARE iteratively generates a temporary next sentence

and uses it as a query to retrieve relevant documents when the model exhibits low confidence,

then regenerates the sentence conditioned on the retrieved information. The approach achieves

superior performance compared to different retrieval baselines across four diverse long-form

generation tasks, demonstrating that forward-looking retrieval queries that anticipate future

content significantly outperform past-context-based approaches. The method is applicable to

any large language model at inference time without requiring additional training, making it a

practical solution for improving RAG systems.

Déjean [23] presents a method for training large language models to determine when RAG

is necessary by developing an “I Know” (IK) classifier which predicts whether an LLM can

answer questions using only its parametric memory. The method enables a reduction of over

50% in retrieval operations across various question-answering datasets while maintaining or

improving answer quality. The work provides empirical evidence that LLMs can be trained to

assess their own knowledge limitations, with performance varying significantly across different

dataset types and retrieval requirements.

Due to the need to train a model on the proposed behaviour, this approach is suitable only

for use cases where the model already has extensive knowledge of the topic the RAG system is

being built for. This makes it not suitable for the task explored in this thesis.

Chan et al. propose Cache-Augmented Generation (CAG) [24] as an alternative to RAG for

knowledge-intensive tasks, leveraging the extended long context capabilities of modern LLMs.

Their approach involves preloading all relevant documents into the LLM’s context window

and then storing the resulting key-value (KV) cache offline, eliminating retrieval latency and

potential retrieval errors inherent in traditional RAG systems. Experiments on SQuAD and

HotPotQA benchmarks using Llama-3.1 8B demonstrate that CAG consistently achieves higher

BERT Scores than both sparse (BM25) and dense (OpenAI embeddings) RAG baselines.

The authors conclude that, as long as the entire knowledge base fits within the model’s

context window, CAG outperforms RAG, with the performance gap narrowing as the document

collection size increases. This also means the approach is limited to scenarios where the

entire knowledge base can fit within the model’s context window. For applications with small,

constrained knowledge bases such as internal documentation or FAQs, CAG can provide a more

effective alternative to RAG, though hybrid approaches combining preloading with selective

retrieval may offer optimal solutions for larger-scale applications.

Li et al. conduct an evaluation comparing Long Context (LC) and RAG approaches for LLMs

[2]. To assess conflicting findings in prior literature, the study employs a methodology that

10

Related Work

filters out questions answerable from parametric knowledge, to make sure that their evaluation

focuses on the retrieval and does not benchmark the LLM itself. It evaluates multiple retrieval

methods (chunk-based, index-based, and summarization-based), and expands existing datasets

to approximately 20,000 questions across 12 QA benchmarks.

Their experiments reveal that LC generally outperforms RAG (56.3% vs 49% accuracy),

particularly with well-structured, dense contexts such as Wikipedia articles and narrative texts.

However, RAG demonstrates advantages when handling fragmented information, especially

in dialogue-based scenarios and general questions requiring synthesis from multiple sources.

Among retrieval methods tested, RAPTOR (a summarization-based approach using hierarchical

clustering) achieved the best performance at 38.5% accuracy, outperforming chunk-based and

index-based retrievers.

In summary, approaches that reduce retrieval needs have distinct limitations: FLARE enables

adaptive retrieval at inference time, the “I Know” classifier requires domain-specific training

data, and CAG is constrained by context window size. These methods work best when knowl

edge is stable and well-represented in the model’s training data, limiting applicability to use

cases requiring frequent content updates or specialized information.

2.5.4 Building better retrieval methods

Leto et al. investigate optimization strategies for retrieval components in RAG pipelines [25],

evaluating systems with two instruction-tuned LLMs and two dense retrieval models across

three datasets. Key findings show QA performance plateaus at 5-10 retrieved documents, with

gold document5 recall being more critical than search recall, with more gold documents yielding

better results. Notably, the study demonstrates that approximate nearest neighbor search with

reduced accuracy provides substantial speed and memory benefits with minimal performance

loss.

Contrary to prior work, injecting noisy documents consistently degrades both correctness

and citation quality, indicating that retrieval systems should prioritize retrieving relevant gold

documents over maximizing retrieval quantity.

Soman and Roychowdhury conducted experimental studies on RAG systems for technical

documents [26] using IEEE specifications and battery terminology, finding that sentence

embeddings become unreliable with increasing chunk sizes, particularly when queries or docu

ments exceed 200 words. Their key finding was that similarity score thresholding for retrieval

augmentation can be unreliable and potentially result in sub-optimal generator performance,

while better contextual retrieval (sentence-based similarity with paragraph-level retrieval) and

splitting definitions from terms in glossaries improved overall system performance. The authors

demonstrated that chunk length significantly affects retriever embeddings and that keyword

positioning within sentences influences retrieval accuracy, though they acknowledge the domain-

specific nature of their telecom-focused findings may limit generalizability.

5A document which contains the ground truth to a given question.

11

Related Work

Weller et al. introduce Promptriever [27], the first retrieval model capable of being prompted

like language models to dynamically adjust relevance criteria on a per-query basis. Using

LLaMA as a backbone, the authors train a Bi-encoder on a curated dataset of ~500k MS

MARCO instances augmented with instance-level natural language instructions and “instruc

tion negatives” - cases where query-passage pairs become less relevant when specific instructions

are added.

This approach would be used in the retrieval step in a RAG pipeline where a user query

is transformed to a vector embedding for search in a vector database. Instead of a generic

embedding model, Promptriever produces embeddings conditioned on the input instruction,

enabling users to specify detailed relevance criteria (e.g., “movies before 2022 that are not co-

directed”) without requiring traditional filters or reranking approaches.

Promptriever achieves state-of-the-art performance on instruction-following retrieval bench

marks while maintaining competitive standard retrieval performance, and demonstrates the

ability to reliably improve retrieval through zero-shot prompting.

These studies demonstrate that QA performance plateaus at 5 to 10 retrieved documents,

with gold document recall being more critical than overall search recall, and that chunk

sizes should not exceed 200 words to maintain embedding reliability. Since retrieving relevant

documents proves more important than maximizing retrieval quantity, reranking techniques

(Section 2.5.5) seem promising to ensure the limited number of documents provided to the

generator are of highest relevance.

2.5.5 Reranking

Reranking is the process of ranking documents for relevance compared to a user query. In RAG,

this step is performed after retrieving documents from the retriever, refining the document

search results before passing them to the generator. Formally, this can be expressed as an

additional step or as part of the retrieval component.

Yu et al. [28] present RankRAG, an instruction-tuned LLM which can rank relevant docu

ments and provide the answer to a user query based on the top-k reranked documents. The

approach uses a two-stage training process that unifies ranking and generation tasks into a

standardized question-context-answer format, enabling effective knowledge transfer across tasks.

During inference, RankRAG adds an additional ranking step to traditional RAG pipelines,

where the model first reranks retrieved contexts and then generates answers using the top-

ranked passages.

Experimental results using Llama3 8B and 70B models demonstrate that RankRAG

significantly outperforms existing RAG methods. Additionally, the method shows strong gener

alization capabilities, achieving comparable performance to GPT-4 on biomedical benchmarks

without domain-specific training, suggesting that the dual ranking and generation capabilities

mutually enhance each other in RAG systems.

12

Related Work

Yan et al. propose Corrective Retrieval Augmented Generation (CRAG) [29], a plug-and-play

framework that addresses the robustness issues in RAG systems when retrieval quality is poor.

The approach employs a lightweight T5-based retrieval evaluator to assess document relevance

and triggers three corrective actions: knowledge refinement for relevant documents, web search

fallback for irrelevant retrievals, and a hybrid approach for ambiguous cases. Experimental

results demonstrate significant performance improvements over standard RAG and Self-RAG,

while maintaining minimal computational overhead.

Going in a similar direction, Zhang et al. present mGTE [30], a framework for building

long-context multilingual text representation and reranking models. The system combines a

hybrid text representation model capable of generating both dense and sparse vectors with a

cross-encoder reranker, both trained on a large-scale multilingual dataset. Evaluation results

demonstrate that their base-sized encoder outperforms the previous state-of-the-art XLM-R

on natural language understanding benchmarks, while their retrieval models match the perfor

mance of larger BGE-M3 models and achieve superior results on long-context retrieval tasks.

Blagojevic introduces two novel ranking components for enhancing RAG pipelines in the

Haystack framework [31]: DiversityRanker, which uses sentence transformers and a greedy

algorithm to select semantically diverse documents from a relevance-filtered pool, and

LostInTheMiddleRanker, which mitigates the lost in the middle problem6 by positioning the

most relevant documents at the beginning and end of the LLM’s context window. Both compo

nents were evaluated on long-form question answering tasks and found to achieve a 20-30%

increase in average pairwise cosine distance between context documents compared to baseline

pipelines. However, the evaluation methodology primarily relied on diversity metrics rather

than comprehensive answer quality assessment, limiting the conclusions about overall RAG

performance improvements.

Proposing a more integrated approach, Asai et al. introduce SELF-RAG [32], a framework

which reviews and critiques retrieved documents before using them to generate a response.

They train an LLM to output retrieval tokens to trigger a retrieval model and critique tokens

to evaluate the output and choose the best sources for answer generation.

For training, they distill GPT-4 feedback into a critic that labels training data with Retrieve/

ISREL/ISSUP/ISUSE tokens; the generator is then trained to predict both outputs and these

tokens. At test time, only the generator and an external retriever are needed.

Across six tasks, SELF-RAG outperforms instruction-tuned and RAG baselines. Limitations

include occasional unsupported generations despite citations, dependence on off-the-shelf

retrieval and corpus choices, and sensitivity to training data scale. Human evaluations report

good alignment of reflection tokens with annotator judgments.

6The lost in the middle problem is a phenomenon where LLMs when given a list of documents, seem to
prioritize those documents at the start and end of the prompt, losing the information in the middle.

13

Related Work

Similarly, Xia et al. propose Self-Reasoning [33], an end-to-end framework that enhances

Retrieval-Augmented Language Models by incorporating self-generated reasoning trajectories

through three processes: relevance assessment, evidence selection with citation, and trajectory

synthesis. The framework trains LLMs to internally evaluate and filter retrieved documents

without external tools, requiring only 2,000 training samples compared to 46,000 for competing

methods like SELF-RAG. Evaluated on various datasets, the approach demonstrates superior

performance, particularly in fact verification tasks, while improving both reliability through

better handling of noisy retrievals and traceability through explicit citation generation.

Li et al. conducted a comprehensive evaluation of RAG system components [34] through 74

experiments across nine research questions, using TruthfulQA and MMLU datasets to assess

performance variations across different RAG setups. The study introduced and tested several

advanced RAG designs. Query expansion, where the input query is expanded into multiple

keyword phrases relevant to answer the query, Contrastive In-Context Learning which includes

correct and incorrect examples from the evaluation data as the knowledge base, and Focus

Mode that performs sentence-level retrieval and ranking.

Results demonstrated that Contrastive In-Context Learning achieved the strongest perfor

mance improvements, significantly outperforming baseline RAG systems, while Focus Mode

ranked second by prioritizing precise, relevant context over comprehensive coverage. Contrary to

common assumptions, the study found that knowledge base size and document chunk variations

had minimal impact on performance, with context quality and relevance proving more critical

than quantity.

The focus mode shows that reranking is a valid approach to improve RAG generation results.

Query expansion seems like a promising way to improve full-text search for keywords in the

context of this thesis.

The approaches range from training-intensive methods like SELF-RAG to lightweight alterna

tives like Self-Reasoning and plug-and-play solutions like CRAG. Hybrid approaches combining

dense and sparse vectors with cross-encoder reranking, such as mGTE, demonstrate superior

performance across different task types.

Reranking in general presents an interesting direction for improving RAG systems when the

retrieval process itself fails to return good results. This could be the case when the initial

retrieval returns suboptimal results. Even when not using web search, as is often the case with

QA systems used in practice, refining search results before the generation process seems to be

a promising direction.

In CRAG’s web search approach, they are using an LLM to pick the keywords to search

for, a solution which could be applicable for searching using traditional full-text search as

well. Interestingly, they are only using 10 documents - when having a reranker system to rate

retrieved documents, it would be possible to retrieve 100 documents, rank them and then use

the top 10 among the 100 ranked.

14

Related Work

Using these approaches from the different methods provides a promising direction for the

topics in this thesis.

2.5.6 Iteratively improving RAG results

More recently, Xi et al. present OmniThink [35], a machine writing framework that emulates

human-like iterative research processes by continuously expanding on retrieved information

through alternating expansion and reflection cycles. The method introduces an Information

Tree that hierarchically organizes retrieved information and a Conceptual Pool that distills

insights to progressively expand both information and cognition boundaries during the writing

process. Experimental results on the WildSeek dataset demonstrate superior performance over

existing methods across metrics of relevance, breadth, depth, and novelty, with the authors

introducing a new Knowledge Density metric to measure the ratio of meaningful content to

total text volume.

Similar to CRAG, SEAKR (Self-aware Knowledge Retrieval) [36] introduces an adaptive

retrieval-augmented generation approach that leverages the internal states of large language

models to dynamically determine when to retrieve external knowledge and how to integrate it.

The method extracts self-aware uncertainty by computing the Gram determinant and using it to

trigger retrieval when thresholds are exceeded. SEAKR incorporates three adaptive mechanisms:

self-aware retrieval for deciding when to search, self-aware re-ranking for selecting the most

uncertainty-reducing knowledge snippets from retrieved candidates, and self-aware reasoning for

choosing between different synthesis strategies. Their approach achieved substantial improve

ments over existing adaptive RAG methods, with ablation studies revealing that dynamic

knowledge integration strategies contributed more to performance gains than the retrieval

decision mechanism alone. The tuning-free approach demonstrates better generalization across

tasks compared to fine-tuned alternatives, though it requires access to model internal states

and incurs computational overhead from multiple generation sampling.

While these iterative approaches show promise, OmniThink’s multi-cycle process is primarily

suited for long-form content generation, and SEAKR’s multiple generation sampling incurs

computational overhead that may limit use in latency-sensitive QA scenarios.

2.6 Search approaches and algorithms

Robertson and Zaragoza present a theoretical exposition of the Probabilistic Relevance Frame

work (PRF) [37], which provides the formal foundation for BM25, one of the most successful

document retrieval algorithms in information retrieval. The framework models document rele

vance as a hidden probabilistic variable, enabling systems to rank documents by their estimated

probability of relevance to a given query through a principled mathematical derivation. The

paper extends the basic BM25 algorithm to BM25F, which incorporates document structure

and metadata (such as titles, abstracts, and anchor text) through weighted field combinations,

making it particularly effective for web search and structured document collections.

15

Related Work

Singh et al. [38] define and systematize Agentic RAG, asking how embedding autonomous

agents (reflection, planning, tool use, multi-agent collaboration) extends traditional RAG to

enable adaptive retrieval, iterative refinement, and complex task orchestration. They contribute

a taxonomy of architectures and workflow patterns, alongside a comparative analysis with prior

RAG paradigms. The paper also surveys tools and frameworks and synthesizes applications

across different domains.

Key conclusions highlight benefits in contextual precision and scalability via agentic orches

tration, while noting challenges in coordination complexity, latency, and ethical deployment.

Generally, the idea to compose multiple LLMs with tools to improve RAG seems promising.

Anderson et al. present Lingua [39], a speech-to-speech interpretation system that addresses

error propagation issues in cascaded ASR-MT-TTS pipelines by incorporating pre-existing

speech scripts. The system uses a fuzzy matching algorithm based on Levenshtein distance

to align real-time Automatic Speech Recognition (ASR) transcriptions with script sentences

at the phonemic level, achieving F1 scores above 0.95 with an average lag of 0.72 seconds.

This approach significantly improves translation accuracy while reducing latency compared

to traditional cascaded systems, making it particularly suitable for live speech interpretation

scenarios where scripts are available in advance.

As this approach covers speech-to-speech, it is not directly relevant for the topic of this thesis,

but demonstrates a simple algorithm to find matches between the transcript and manuscript,

which can be useful for general text-matching for RAG.

2.7 Benchmarking RAG systems

To find out if the performance of a RAG system is optimal, various benchmarks exist.

Friel et al. introduced RAGBench [40], a comprehensive benchmark dataset comprising 100k

examples across five industry domains for evaluating Retrieval-Augmented Generation systems,

addressing the lack of standardized evaluation criteria in the field. The authors developed the

TRACe evaluation framework, which measures four key metrics: utilization, relevance, adher

ence, and completeness of RAG system components. Through extensive benchmarking, they

demonstrated that fine-tuned specialized models (DeBERTa-v3-Large) consistently outperform

LLM-based evaluation methods such as GPT-3.5 judges, RAGAS, and TruLens across most

evaluation tasks. The study reveals that context relevance estimation presents particular chal

lenges, requiring sophisticated understanding beyond semantic similarity to determine whether

retrieved documents contain specific information necessary for accurate question answering.

Fleischer et al. introduce RAGFoundry [41], an open-source framework designed to address

the complexity of implementing and evaluating RAG systems. The framework integrates the

four key modules: data creation, training, inference, and evaluation into a unified workflow

for RAG experimentation and evaluation. The data processing module employs components

including loaders, retrievers, samplers, and prompters, while the training module supports

16

Related Work

LoRA fine-tuning using the TRL framework. The evaluation module incorporates different

local and global metrics for evaluation. The authors demonstrate the framework’s effectiveness

by fine-tuning Llama-3 and Phi-3 models across three knowledge-intensive question-answering

datasets (TriviaQA, PubmedQA, ASQA).

This framework distinguishes itself from production-oriented RAG tools by focusing specifi

cally on academic research needs and comprehensive evaluation capabilities.

Krishna et al. introduce FRAMES [42], a benchmark with 824 multi-hop Wikipedia questions

evaluating retrieval-augmented generation across factuality, retrieval, and reasoning. State-of-

the-art LLMs score 0.408 without retrieval, improve modestly with BM25, and reach 0.729

with oracle documents, where the LLM receives all documents used to create the question,

simulating perfect retrieval. A multi-step retrieval-and-planning pipeline achieves 0.66, though

errors persist in numerical and tabular reasoning. Future work targets stronger retrievers and

process-supervised reasoning to close the performance gap.

While this presents an interesting approach, its focus on complex reasoning tasks is somewhat

misaligned with the goals of this thesis. Its use of search queries is similar to the intended

methodology.

2.8 Conclusion

This chapter looked at current research in RAG, revealing several key insights that inform the

direction of this thesis.

The origins of RAG (Section 2.1) established that retrieval quality fundamentally deter

mines system performance, a finding that remains true today. While fine-tuning approaches

(Section 2.4) can inject knowledge into language models, research demonstrates that RAG

consistently outperforms fine-tuning for knowledge tasks, making it a better approach for adding

knowledge to LLMs.

Current research on improving retrieval (Section 2.5) reveals multiple promising directions.

Graph-based approaches show benefits for structured data and hierarchical relationships,

though they are only suitable when the data has certain characteristics. Methods that reduce

retrieval needs by figuring out if the LLM can answer a question from its parametric memory

work best when knowledge is stable and well-represented in training data, limiting their use for

specialized domain-specific or frequently-updated knowledge.

The most relevant findings center on building better retrieval methods. Research shows that

QA performance plateaus at 5-10 retrieved documents, and chunk sizes should not exceed

200 words to maintain embedding reliability. Since retrieving relevant documents proves more

important than maximizing retrieval quantity, reranking techniques (Section 2.5.5) are a

promising direction to ensure the limited documents provided to the generator are of highest

relevance.

17

Method and Experiment Architecture

Multiple studies demonstrate that combining semantic embeddings with lexical matching

(BM25), adding contextual information to chunks, and implementing reranking all contribute

additively to retrieval performance. Notably, sparse retrieval methods like BM25 can outperform

dense embedding-based approaches in certain scenarios (Section 2.6), suggesting that traditional

full-text search algorithms remain competitive and deserve further investigation.

The surveyed benchmarking approaches (Section 2.7) provide standardized evaluation frame

works, with metrics emphasizing context relevance, utilization, and adherence being critical for

assessing RAG system quality.

These findings suggest a promising research direction: investigating whether traditional full-

text search approaches, enhanced with query expansion and reranking techniques, can achieve

competitive performance with embedding-based RAG systems while avoiding the resource

intensive process of creating and maintaining embeddings. This forms the central motivation

for the work presented in subsequent chapters.

3 Method and Experiment Architecture
This chapter outlines the methodology used to conduct the experiments.

3.1 Dataset Construction and Filtering

The starting point was a multi-source dataset constructed of various questions with correct

answers and the corresponding document corpus. It was originally filtered using GPT-4o to

identify questions that cannot be answered from world knowledge alone [2]. The original contri

bution of this dataset was ensuring that answering these questions requires retrieval rather than

relying on a model’s parametric knowledge. This makes it particularly suitable to benchmark

retrieval quality.

The original dataset comprised 11,758 questions7 compiled from twelve different original

datasets:

We select 12 long-context QA datasets frequently used in studies comparing LC8 and

RAG: Natural Questions, 2WikiMultihopQA, HotpotQA, MuSiQue, MultiFieldQA, Narra

tiveQA, QASPER, QuALTY, Coursera, TOEFL-QA, and MultiDoc2Dial. We also include

the NovelQA dataset, a high-quality, human-annotated resource derived from long-form

novels.

— [2]

The datasets have been selected to provide a high variety of different questions catering to

different use cases.

7In their paper, the authors mentioned a total of 13,628 questions. The dataset provided with the paper only
contains 11,758 questions. Hence, this thesis can only use 11,758 questions.

8Long Context

18

Method and Experiment Architecture

Natural Questions (NQ) [43] is a large-scale open-domain QA benchmark of real Google

search queries paired with Wikipedia pages and annotated with both long and short answers

or null labels. 2WikiMultihopQA [44] is a multi-hop QA dataset built from aligned Wikidata–

Wikipedia evidence, where templated questions are accompanied by explicit reasoning paths

across multiple entities and documents. HotpotQA [45] consists of 113K Wikipedia-based

QA pairs whose diverse questions require reasoning over multiple supporting documents with

sentence-level supporting fact annotations and comparison questions. MuSiQue [46] is a multi-

hop QA benchmark formed by composing interdependent single-hop questions to questions that

require reasoning over multiple steps, additionally including contrastive answerable/unanswer

able variants. MultiFieldQA [47] comprises roughly 150 manually curated questions over long

single documents from law, government, encyclopedias, and scientific articles, targeting long-

context single-document comprehension. NarrativeQA [48] is a reading comprehension dataset

based on full books and movie scripts, where questions require global narrative understanding

across entire documents. QASPER [49] is an information-seeking QA dataset over 1,585 NLP

papers with 5,049 questions authored by practitioners and supporting evidence. QuALITY [50]

is a multiple-choice QA benchmark with about 5K-token passages and questions written by

readers of the full text. NovelQA [51] is a long-context benchmark based on English novels with

documents exceeding 200K tokens on average and human-authored questions with evidence

annotations targeting deep understanding of text in LLMs. MultiDoc2Dial [52] is a dialogue

dataset grounded in multiple datasets in which conversations are conditioned on multiple

domain documents, requiring integration of information from multiple documents across four

different domains. TOEFL-QA [53] is a multiple-choice listening comprehension dataset of

963 examples from the TOEFL test with relatively short narrative contexts assessing English

understanding. The Coursera QA [54] dataset contains 172 multiple-choice questions with

multiple correct answers about course materials with an average context length of ~9K tokens

per document. It tests knowledge-based comprehension of instructional content and was made

for use in long-context evaluation.

Table 1 shows the distribution and actual sources from the original data sources as outlined

in [2].

Note that for multi-document datasets (marked “multi” in the Doc column), the original

benchmark provides a single pre-concatenated context containing all relevant source documents

rather than separate document records. This means that even for multi-hop reasoning datasets

like HotpotQA, MuSiQue, and 2WikiMultihopQA, which originally require evidence from

multiple Wikipedia articles, this experiment treats each merged context as a single retrievable

unit. Consequently, document recall measures whether this merged context was retrieved, not

whether individual supporting documents were found separately.

For this experiment, the dataset was reduced to 6,284 questions for practical reasons.

19

Method and Experiment Architecture

Dataset T Doc Source Avg Len # Q # Kept % Kept

NQ K multi Wikipedia 18,164.7 109 22 20

Coursera K multi Coursera 7,934.3 172 54 32

NovelQA C single books 67,000.0 210 109 52

2WikiMHQA R multi Wikipedia 7,191.3 300 152 51

HotpotQA R multi Wikipedia 10,602.7 200 93 47

MuSiQue R multi Wikipedia 12,974.3 200 140 70

MultiFieldQA C single papers, reports 5,706.1 150 121 81

NarrativeQA C single books, films 25,274.2 200 171 86

QASPER C single papers 5,350.3 224 221 99

QuALTY C single stories 5,089.2 202 202 100

TOEFL-QA C single exams 729.1 121 121 100

MultiDoc2Dial C multi dialogue 3,076.9 158 158 100

Table 1: Overview of the original datasets as outlined in [2]: ‘The column “T” represents dataset type

with values “K” for “Knowledge”, “R” for “reasoning”, and “C” for “reading comprehension”. […] We

also report number of questions in each set (# Q), number and percentage of questions retained after

filtering (# Kept and % Kept) out questions needing no context[…]’. “Avg Len” is the average size of the

context that is provided to the model to answer the questions from each dataset in tokens.

Questions whose golden documents required more than estimated 100,000 tokens to process

were removed, as the generation LLM used (gpt-oss-120b) supports only up to 128,000

tokens including overhead. Token counts have been approximated by counting the number of

characters per document and dividing the resulting count by 4, since this method was a lot

faster than counting the number of tokens in Python and precise enough for the experiment.

This approximation is based on the observation that English text averages approximately 4

characters per token for GPT-style tokenizers. For standard English prose, this method typically

yields estimates within 10-20% of the actual token count. The approximation tends to slightly

underestimate token counts since technical content, code snippets, or non-English text may

have different character-to-token ratios. Given that the threshold was set at 100,000 tokens with

a model context of 128,000 tokens, this margin of error was acceptable for the filtering purpose.

The removal primarily affected questions from the NarrativeQA dataset, removing 370

questions. Questions from the NovelQA dataset were excluded before processing as its full-novel

documents exceeded practical length limits.

In the original paper, documents which exceeded the model context were truncated from the

end of the context. Truncating has the potential problem of removing important information

when it is located in the end of the document. Therefore, and since this affected only 370

questions of the total 11,758, it made more sense for the experiment in this thesis to remove

the too long questions instead of truncating them.

Some datasets contained thousands of questions (2WikiMultihopQA, HotpotQA, MuSiQue,

NarrativeQA, QuALTY, QASPER) while others had fewer than 100 (e.g., Coursera with only

20

Method and Experiment Architecture

54). Each dataset was capped at 800 questions to achieve better balance. Table 2 shows the full

overview over the number of questions per dataset before and after filtering. The final dataset

spans eleven sub-datasets with more even representation, allowing for systematic comparison

across retrieval methods.

The filtering choices were deliberate and reflect the intended scope of this research. This thesis

focuses on QA tasks where source documents are moderately sized (under 100k tokens), covering

the vast majority of practical RAG applications such as technical documentation, knowledge

bases, and business documents. Full-novel or book-length retrieval represents a distinct problem

domain with different characteristics: it typically requires long-range narrative comprehension,

character tracking across hundreds of pages, and synthesis of information spread across very

large spans of text. This led to the exclusion of the NovelQA dataset for the experiment.

While dense retrieval methods may offer advantages in such long-context scenarios, this thesis

explicitely scopes its investigation to the more common use case of retrieval over document

collections of moderate length. This scoping decision means the findings should be interpreted

as applicable to typical enterprise and knowledge-management RAG deployments rather than

to specialized literary or long-form narrative applications.

Beyond scope considerations, the reductions were also pragmatic (compute/runtime) and

methodological (avoid long-context failures that dominate variance without informing retrieval

quality).

For validation purposes, a sample of 25 questions per dataset (275 total) was selected for

manual review.

Dataset # of questions in the original

dataset

of questions after filtering

2WikiMultihopQA 884 800

Coursera 54 54

HotpotQA 1020 800

MultiDoc2Dial 158 158

MultiFieldQA 121 121

MuSiQue 1523 800

NarrativeQA 1709 800

Natural Questions 351 351

QASPER 2453 800

QuALTY 2523 800

TOEFL-QA 962 800

Total 11,758 6,284

Table 2: Number of questions per dataset before and after filtering.

21

Method and Experiment Architecture

3.2 Model Selection

The gpt-oss-120b model was used, a state-of-the-art open-source model released by OpenAI,

with a 128k token context window [55]. This choice was driven by reproducibility concerns and

institutional access. The model is used to generate the actual answer to the question as well as

for query rewriting in some retriever variants (see Section 3.3.2).

Since the original dataset was filtered using OpenAI’s GPT-4o, there may be questions that

gpt-oss-120b can answer from world knowledge that GPT-4o could not, or vice versa. Further

adding to this, gpt-oss-120b has its training cutoff in June 2024 [55], whereas GPT-4o was

trained on data collected until October 2023 [56]. The None baseline (described in Section 3.3.2)

helps to check for this. Re-running the original experiment used to create the original dataset

would be needed to update it for gpt-oss-120b, however, this is out of scope for this thesis.

For vector embeddings, the Qwen3-4B embedding model was used, selected for its strong

benchmark performance on the MTEB benchmark and leaderboard [57].

To rerank search results, the Jina Reranker v3 model was used, a lightweight, high-perfor

mance model based on Qwen3-0.6B and released in October 2025 [58]. The model uses a novel

architecture which processes all documents and the query in the same context window, enabling

the model to cross-reference different documents against each other and not just to the query.

It achieves a BEIR performance of 61.85 nDCG@10 with only 0.6B parameters [58].

3.3 Experiment Architecture

User Query
(q)

Documents

(D)

Retriever

(R)

Search Engine

(S)

Generator

(G)

Answer

(a)

Search Strategy

Relevant

Documents

(D𝑟)

Figure 2: Based on the RAG definition in Figure 1, this shows the version used in the experiment in this

thesis, adding a search engine which the retriever uses along with a search strategy to retrieve documents.

Figure 2 shows the architecture of the RAG system used in the experiment of this thesis. The

implemented architecture separates the concepts of retriever and search engine to enable a

systematic comparison of different components. This allows to create a matrix of experiments,

testing different query strategies against different search algorithms. Decoupling the retrieval

and search step makes it possible to freely change the underlying search engine, making the

design very suitable for this experiment.

22

Method and Experiment Architecture

Compared to the architecture introduced in Section 2.2, this makes the actual search of the

retrieval part a separate step.

3.3.1 Search Engines

Four primary search backends have been implemented:

1. SQLite Full-Text Search: Combines SQLite Full-Text Search with BM25 to rank the

results [59]. Since many specialized full-text search databases on the market ultimately rely

on BM25 or variants, this implementation in SQLite was treated as representative of this

class of ranking algorithms. Other databases in this class are ParadeDB [60], Elasticsearch

[61], SingleStore [62], and MongoDB [63].

2. pgVector: Uses PostgreSQL with the pgVector extension [64] to do semantic search using

cosine distance search over embeddings generated by the qwen3-4B embedding model with

2,560 embedding dimensions. Data is stored using the halfvec data type and an Hierarchical

Navigable Small World (HNSW) index, resulting in approximate nearest neighbor search

when querying the embeddings.

3. Typesense: For each search, it first computes the frequency of search query tokens, the edit

distance, and proximity to other words in the document corpus. In a second step, it uses a

tie-breaking algorithm to rank results [65].

4. Meilisearch: Similar to Typesense, this database computes relevancy by different factors.

By default these factors are number of matched query terms, typo distance, proximity

between words, user-supplied attribute and sort order, and the similarity of the matched

words with the query words in ascending order of importance [66]. Finally, results are sorted

with a bucket sort algorithm according to the score calculated in the first step [67]. For the

experiment in this thesis, the default ranking order has been used.

Additionally, two baseline implementations were included:

1. None: Returns no documents, serving as a lower baseline to verify the model cannot

answer questions from parametric memory alone. If the used LLM can still answer questions

correctly, it indicates the question is part of its world knowledge, even if it wasn’t for GPT-4o.

2. Golden: Always returns only the correct document (the single context associated with each

question, which for multi-document datasets contains all merged source texts), simulating a

perfect retriever. This represents the upper baseline and achieves 100% document recall by

definition.

Each search engine returns up to 10 documents per query by default, along with a relevance

score to indicate how useful the result might be for the search term. In the case of SQLite

Full-Text Search (FTS), this is the calculated BM25 score, for pgVector this is 1
1+ Cosine Distance ,

Typesense and Meilisearch return their own relevancy scores as returned from their ranking

algorithms. For the None search engine, since no documents are returned no score is returned

either. The Golden search engine always returns a score of 1.

23

Method and Experiment Architecture

The score is passed along with the document to the LLM when it generates the response.

This design choice was not ablated; future work could re-run a subset of configurations without

score information in the generator context to investigate whether providing the scor across

search engines influences the generation result. The full generation prompt can be found in

Appendix A.1.

3.3.2 Retriever Types

Each search engine can be queried through four retriever architectures:

1. Passthrough: Forwards the query directly to the search engine without modification. When

searching with the Embeddings Search engine, the Passthrough retriever is not used due to

the nature of embeddings, which stores and returns only chunks of text. Therefore, Chunk

and Passthrough in embeddings represent the same retriever types and only ChunkRetriever

is used.

2. Search: Uses an LLM9 to rewrite the query into a more effective search query before passing

it to the search engine. The full prompt used to rewrite the query is listed in Appendix A.2.1.

3. Keyword SearchRetriever: Uses an LLM9 to generate keywords from the question, then

searches for each keyword separately. The full prompt used to rewrite the query is listed in

Appendix A.2.2. Results are aggregated and filtered to the top-10 documents by search engine

score. This approach aims to leverage the strengths of keyword-based search while using

full-text search infrastructure. Note that the keyword generation prompt was designed with

FTS in mind and was not specifically tuned for embedding-based retrieval, where natural

language queries might perform better than isolated keywords.

4. ChunkRetriever: Similar to Passthrough, but this retriever returns document chunks

rather than full documents. See Section 3.3.3 for details.

5. Fulldocs: This retriever is only used when using the Embeddings Search Engine. It returns

the full documents whose chunks have been returned while searching for embeddings. Because

all other search engines return full documents when the ChunkRetriever is not used, this

retriever aims to control for cases when the LLM would generate a correct response simply

because it had the full document available. The score of the retrieved full documents is the

same as of the chunks that were originally retrieved.

All search-engine-specific index and ranking settings (tokenization, stopwords, stemming/

synonyms, BM25/HNSW parameters, and Typesense/Meilisearch ranking configuration) are

documented in Appendix A.5.

3.3.3 Chunking Strategy

When building RAG systems, an important decision involves whether to return full documents

or chunks. This is due to the “lost in the middle” phenomenon which suggests that models

9In this experiment, the same model as for all other LLM tasks, gpt-oss-120b was used. It would also be
possible to use a smaller, faster LLM or a fine-tuned variant for search term or keyword generation with
potentially different results.

24

Method and Experiment Architecture

may struggle with extremely long contexts. Other research on Long Context observed how

LLMs struggle especially to use information that is in the middle of their context, opposed to

information that is at the beginning or the end of the provided context [68]. This leads to the

conclusion that Long Context is not a silver bullet to improving the answering capabilities in

a RAG system.

Instead, providing smaller, more relevant chunks of documents may reduce context overhead

and yield better results. To examine this hypothesis, the chunk retriever was added to only

search and retrieve chunks of documents.

In the conducted experiment, these chunks were pre-generated and stored in each search

engine for better performance, though runtime generation based on search matches is a potential

alternative. Chunks were created with a maximum size of 512 characters and an overlap of 50

characters between consecutive chunks. The chunking algorithm prefers sentence boundaries

when splitting, avoiding cuts in the middle of sentences where possible. TODO das klingt nicht

richtig Ultimately, the chosen implementation depends on the search engine used and whether

the results provided by it have enough precision to create good chunks. During retrieval, this is

similar to the Passthrough retriever with the key difference of returning chunks instead of full

documents.

For each search engine, full document retrieval and chunk-based retrieval were tested. This

allows to test whether providing focused, relevant chunks outperforms full document context.

For embedding-based search, the Passthrough and Chunk retrievers are functionally equiva

lent, the Passthrough retriever for embeddings was therefore excluded from comparative analysis

to avoid redundant data points.

3.4 Reranking

Reranking is a refinement step which uses a specially trained reranking model to reorder the

retrieved results, putting the most relevant on the top of the list. Section 2.5.5 explains reranking

in more detail. In theory, reranking should be able to improve especially noisy FTS results for

usage in RAG.

In this experiment, reranking is applied using Jina Reranker v3 after initial retrieval. This

model, released in October 2025 and based on the Qwen3-0.6B LLM, represents current state-

of-the-art performance on the BEIR benchmark while remaining relatively lightweight [58].

Experiments were performed on all search configurations both with and without reranking on

the full dataset to isolate its contribution. This allows evaluation of both base retrieval quality

and the impact of reranking across different search engine choices.

In the architecture presented in Figure 2, reranking happens as part of the retriever.

25

Method and Experiment Architecture

3.5 Evaluation

The evaluation method employed for the experiment combines manual review with automated

assessment.

First, approximately 1,000 generated answers with different retrieval methods for the previ

ously selected 275 sample questions were evaluated manually as correct, incorrect or partially

correct. This provides ground truth for automated validation.

Then, a model-as-judge approach was developed where an LLM10 receives the question, correct

answer, and generated answer, then classifies the response as correct, incorrect or partially

correct.

Multiple-choice datasets (QuALITY, TOEFL-QA, Coursera) are evaluated identically to

open-ended questions. The generation model outputs free-form text responses which may

include option letters, option text, paraphrases, or combinations thereof (e.g., “B. she wore

free-flowing costumes and D. she danced without shoes” or “The class was canceled because

there weren’t enough students enrolled (Option A)”). The expected answers for multiple-choice

questions are stored as option letters (e.g., “B” or “BD” for multi-answer questions). The

judge performs semantic comparison rather than exact string matching, determining whether

the generated response conveys the same meaning as the expected answer. For multi-answer

multiple-choice questions, the partially correct category captures cases where the model iden

tifies some but not all correct options.

The model-as-judge approach was first introduced in 2023 by Zheng et al. [69]. Originally

used to rate answers by different chat LLM, it matched the results of human annotators by 80%.

To run and optimize the prompt, the dspy Python library has been used. A MIPROv2 optimizer

was employed to improve the prompt, an optimizer designed to improve multi-stage Language

Model Programs by refining both free-form instructions and few-shot demonstrations at the

same time to maximize a final task metric. In the library, many prompt variants are generated

which are then searched using a Bayesian surrogate model to approximate the optimal prompt

and search through proposed prompt combinations [70]. Results are validated using validation

data that was collected manually.

Additionally, dspy simplifies using and managing the prompts in the code, streamlining the

implementation.

The full optimized evaluation prompt can be found in Appendix A.3.

After generating training data manually and testing various models and prompts, 92% accu

racy was achieved using the automated approach. This 92% figure represents the optimization

metric calculated during prompt tuning on the manually labeled training data used by dspy.

To independently verify the evaluation quality, 216 answers generated with the golden

retriever that also had manually rated labels available from the original sample data collection

10Here, gpt-oss-120b has been used as well.

26

Method and Experiment Architecture

were compared. Answers where the model replied that it did not know the response were

excluded11. For each question, the binary correctness judgments were compared between manual

and automatic methods:

Agreement Rate = (Number of Matching Ratings
Total Number of Paired Ratings) × 100%

This verification yielded an 84.7% agreement rate with a Cohen’s Kappa of 0.618, indicating

“substantial agreement” according to the interpretation scale presented by Landis and Koch

[71]. The difference between training accuracy (92%) and validation agreement (84.7%) is

expected: the optimization metric measures performance on the training data used to tune the

prompt, while the agreement rate reflects real-world performance on previously unseen answers

evaluated after the experiment.

While fine-tuning could potentially improve this further, the achieved reliability was deter

mined to be sufficient for large-scale evaluation in the context of this thesis. Cohen’s Kappa

accounts for agreement occurring by chance, making it a more robust measure than simple

percent agreement, and a value of 0.618 is considered adequate for the experiment in this

thesis where the goal is to identify relative performance differences rather than precise absolute

measurements.

3.6 Experimental Infrastructure

All experimental runs, questions, and model answers are logged in a central database for

analysis. The system is built for robustness, allowing multiple runs to be started without

overwriting previous data.

The question-answering prompt used in the generator follows best practices but required

tuning to prevent excessively long responses. It was empirically observed that when the model

lacks relevant documents, it tends to generate really verbose but incorrect answers, particularly

when only irrelevant documents are retrieved. However, when no documents are found, the

model reliably responds with “I don’t know” as instructed. This matches current research

findings showing that LLMs perform worse when the context contains irrelevant information

than when the context is empty [68].

3.7 Key Considerations and Limitations

The used dataset was originally filtered using GPT-4o, while this experiment uses gpt-oss-120b.

Differences in model capabilities and knowledge cutoffs may affect which questions genuinely

require retrieval.

Due to gpt-oss-120b’s 128k token context window, some documents exceed practical limits.

The dataset was filtered by token size to address this, but context window limitations remain

relevant even for newer long-context models due to performance degradation and the “needle

in the haystack” problem.

11Cases where the model replied with “I do not know the answer to your question.” as instructed in the
system prompt.

27

Results

All experiments were conducted on a single model with one embedding model. Results may

not generalize to other model families.

In total, 32 configurations were evaluated: 4 search engines (SQLite FTS, pgVector, Type

sense, Meilisearch) × 4 retrievers (Passthrough, Search, Keyword, Chunk) × 2 reranking options

(with and without), minus the 2 redundant embedding Passthrough configurations, plus the

2 full document retreival configurations, plus 2 baselines (Golden and None). No prompts

or hyperparameters were tuned after inspecting experimental results. The prompts for query

rewriting and keyword generation were designed a priori based on task requirements, and

search engine parameters (e.g., returning top-10 results) were fixed before experiments began.

Hyperparameter optimization was outside the scope of this thesis, which focused on comparing

retrieval strategies under consistent conditions rather than optimizing individual configurations.

4 Results
This chapter presents the experimental results obtained from the evaluation outlined in the

previous section. These results are used to answer the research question of whether full-text

search can be a viable alternative to embedding-based search in RAG systems. The findings

are categorized into results across all datasets in Section 4.1, document recall analysis in

Section 4.1.3, timing analysis in Section 4.2, and the best configurations per dataset Section 4.3

and Section 4.4.

4.1 Overall Performance Across Search Engines

This section presents the broad results of the experiment. It is expected that using external

data via RAG contributes significantly to the results of the QA tasks.

Table 3 presents the comprehensive results across all search engine configurations. The search

engine, retriever, and reranking columns describe the retrieval pipeline components: the search

engine (see Section 3.3.1), the retriever type (see Section 3.3.2), and whether reranking was

applied (see Section 3.4). Answer quality is captured through four percentage-based metrics: the

percentage of correctly retrieved answer documents (Doc Recall), the percentage of questions

answered correctly, partially correct, and the combined correct plus partial rate, all evaluated

using the model-as-judge approach described in Section 3.5. Performance characteristics are

reported through average retrieval time, average completion time, and average total response

time, all measured in seconds and computed across the full set of evaluated queries.

28

Results

S
e
a
rc

h
 E

n
g
in

e

R
e
tr

ie
v
e
r

R
e
ra

n
k
e
d

D
o
c
 R

e
c
a
ll

%
 C

o
rr

e
c
t

%
 P

a
rt

ia
l

%
 C

o
rr

e
c
t+

P
a
rt

ia
l

A
v
g
 R

e
tr

ie
v
a
l
(s

)

A
v
g
 C

o
m

p
le

ti
o
n
 (

s)

A
v
g
 R

e
sp

o
n
se

 (
s)

Golden Passthrough No 100.00% 69.40% 5.52% 74.91% 0.0097 1.8689 1.8787

None Passthrough No 0.00% 7.65% 1.40% 9.05% 0.0000 0.9521 0.9521

No 40.07% 24.59% 3.51% 28.10% 0.2264 1.2641 1.4905
Chunk

Yes 40.12% 24.06% 3.41% 27.47% 0.3291 1.6924 2.0215

No 33.24% 28.58% 3.06% 31.64% 0.4957 9.3811 9.8772
Fulldocs

Yes 37.65% 31.19% 3.39% 34.58% 26.3811 8.3206 34.7021

No 6.71% 8.06% 2.50% 10.56% 1.4247 1.0384 2.4631
Keyword

Yes 6.54% 7.15% 2.16% 9.31% 2.4345 1.2453 3.6798

No 27.83% 17.98% 2.61% 20.59% 0.2364 1.1580 1.3944

Embeddings

Search
Yes 27.59% 16.96% 2.78% 19.75% 0.3448 1.1391 1.4840

No 0.52% 7.70% 1.48% 9.18% 0.0044 0.9581 0.9625
Chunk

Yes 0.53% 8.10% 1.38% 9.48% 0.0539 1.3200 1.3739

No 8.29% 14.82% 2.52% 17.34% 2.0209 8.5963 10.6173
Keyword

Yes 10.50% 16.12% 2.72% 18.84% 6.9150 14.0422 20.9572

No 20.80% 22.46% 2.71% 25.17% 0.0867 3.8680 3.9548
Passthrough

Yes 27.64% 25.27% 2.93% 28.20% 1.7182 4.5196 6.2381

No 21.21% 22.77% 2.46% 25.23% 1.4125 3.9697 5.3822

Full-Text Search

Search
Yes 25.65% 24.52% 2.50% 27.02% 3.1187 4.2398 7.3585

No 12.53% 4.46% 1.10% 5.56% 0.0095 1.0940 1.1036
Chunk

Yes 12.56% 4.71% 1.24% 5.95% 0.1013 1.7684 1.8697

No 56.25% 39.18% 4.46% 43.64% 0.2804 9.7985 10.0789
Keyword

Yes 54.69% 40.44% 4.47% 44.91% 4.1565 22.8093 26.9658

No 36.63% 29.30% 3.17% 32.47% 0.1901 9.4851 9.6753
Passthrough

Yes 36.19% 29.66% 3.53% 33.20% 4.9603 9.7008 14.6613

No 46.64% 34.18% 3.75% 37.94% 0.1215 8.0988 8.2203

Meilisearch

Search
Yes 47.45% 36.97% 3.42% 40.39% 3.0814 8.3723 11.4537

No 11.96% 3.43% 0.80% 4.23% 0.2070 0.9512 1.1583
Chunk

Yes 11.90% 3.64% 0.62% 4.26% 0.4930 1.3147 1.8078

No 46.21% 37.32% 3.69% 41.01% 1.2029 8.4977 9.7006
Keyword

Yes 46.16% 37.29% 3.77% 41.06% 7.3586 28.9181 36.2768

No 32.84% 29.60% 3.23% 32.83% 0.7932 4.6709 5.4644
Passthrough

Yes 33.78% 30.49% 3.06% 33.55% 5.0499 4.8642 9.9146

No 39.35% 34.29% 3.18% 37.48% 0.3036 4.1061 4.4098

Typesense

Search
Yes 39.26% 33.91% 2.99% 36.90% 2.6623 4.4194 7.0817

Table 3: Performance per search engine in all run configurations. Values marked in dark green are the

best overall, values in light green are the best per search engine, values marked dark red are the worst

overall, values in light red are the worst per search engine - for configurations except Golden and None.

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time,

average completion time, and average response time, lower is better.

29

Results

D
a
ta

se
t

D
o
c
 R

e
c
a
ll

%
 C

o
rr

e
c
t

%
 P

a
rt

ia
l

%
 C

o
rr

e
c
t+

P
a
rt

ia
l

A
v
g
 R

e
tr

ie
v
a
l
(s

)

A
v
g
 C

o
m

p
le

ti
o
n
 (

s)

A
v
g
 R

e
sp

o
n
se

 (
s)

2WikiMultihopQA 35.32% 28.42% 0.86% 29.28% 2.2755 6.0229 8.2985

Coursera 28.14% 20.83% 40.95% 61.78% 1.7595 4.6152 6.3747

HotpotQA 44.58% 33.21% 0.91% 34.12% 1.8512 7.1827 9.0340

MultiDoc2Dial 24.02% 14.19% 6.61% 20.80% 2.8846 4.0879 6.9727

MultiFieldQA 35.63% 29.61% 3.19% 32.81% 1.9170 5.1421 7.0591

MuSiQue 33.02% 24.55% 1.81% 26.36% 2.0748 7.8541 9.9290

NarrativeQA 25.66% 9.60% 1.57% 11.17% 2.7864 5.0024 7.7889

Naturalquestion 47.78% 29.55% 4.08% 33.63% 1.7119 6.4107 8.1227

QASPER 17.94% 16.12% 6.55% 22.67% 1.4757 5.1588 6.6346

QuALTY 21.53% 20.75% 0.25% 21.01% 2.5239 4.0926 6.6166

TOEFL-QA 24.64% 32.23% 4.01% 36.24% 2.4068 3.7990 6.2058

Table 4: Summary per dataset across all run configurations. Doc Recall shows the average percentage

of questions where the gold document was retrieved. Values marked in dark green are the best overall,

values in light green are the 2nd best overall, values marked dark red are the worst overall, values in

light red are the 2nd worst overall. For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is

better, for average retrieval time, average completion time, and average response time, lower is better.

The baseline configurations established the performance bounds for the evaluation: The Golden

retriever, which returned only the correct source document, achieved 69.40% correctness, while

the None retriever, which did not add any documents to the context, achieved 7.65% correctness.

This indicates that 7.65% of questions can be answered correctly by gpt-oss-120b based solely

on its parametric knowledge. This is more than what was previously filtered questions by GPT-4o

when curating the original dataset – the questions filtered in the dataset could not be answered

at all by GPT-4o. These general results across all different configurations provide a first insight

into the overall trends of the experiment and are used to spot any outliers.

Similarly, Table 4 shows the results grouped by dataset across all retrieval configurations.

Meilisearch with keyword search and reranking achieved the highest performance among

the tested retrieval methods at 40.44% correctness. The difference to without reranking was

minimal, only 1.26% lower at 39.18% correctness. Typesense demonstrated similar performance

characteristics as Meilisearch, including only a marginal difference between with or without

reranking for keyword search – achieving 37.29% correctness with reranking and 37.32% without

reranking.

30

Results

Full-text search methods via SQLite and BM25 showed varied performance depending on the

retrieval strategy. Simple direct search via the passthrough retriever yielded 25.27% correctness

with reranking, on par with search in embeddings. With search query rewriting, performance

slightly dropped to 24.52% correctness with reranking and 22.77% without reranking. Key

word-based full-text search achieved 16.12% correctness with reranking and 14.82% without

reranking. These results suggest that the search query generation strategy performs comparably

to direct passthrough search, likely due to the nature of full-text search mechanisms. Reranking

has a small effect (roughly 2%), but the difference is modest.

Chunk-based embeddings achieved 24.06% correctness with reranking and 24.59% without

reranking. When passing the full document of the retrieved chunks to the LLM, a slighly higher

28.58% correctness was observed. With reranking, these results were improved by almost 7%

to 31.19%, representing the best results for the Embeddings Search Engine.

Keyword-based embedding search performed worst for the embedding search engine at 7.15%

correctness with reranking, falling slightly below the baseline of 7.65%. Without reranking,

performance is slightly better at 8.06%. This suggests that incorrect source retrieval actively

degraded model performance.

Chunk-based retrieval with Meilisearch and Typesense performed notably poorly. Meilisearch

chunk retrieval achieved only 4.71% correctness with reranking and 4.46% without reranking,

Typesense chunk retrieval achieved 3.64% correctness with reranking and 3.43% without

reranking. Both fall below the None baseline. These results indicate that the wrong chunks

were retrieved, introducing noise that led the model to very wrong answers and degraded LLM

performance below its baseline parametric knowledge.

Despite poor chunk performance, direct search with Meilisearch achieved respectable results

at 29.66% correctness with reranking and 29.30% without reranking, on par with full document

embeddings search and better than standard full-text search. When search queries were gener

ated, Meilisearch achieved an even better score of 36.97% correctness with reranking and 34.18%

without reranking.

4.1.1 Best Embedding vs. Full-Text Search

To analyse whether a systematic performance difference exists between embedding-based and

full-text search approaches, the best-performing configuration from each category was compared

across all evaluated datasets. Table 5 presents the results of the best full-text search approach

(one of SQLite FTS, Meilisearch, or Typesense) against the best embedding-based approach

for each dataset.

The results reveal a consistent and substantial performance gap favoring full-text search

methods. This difference becomes especially clear when examining only the % Correct metric,

as illustrated in Figure 3. Full-text approaches outperform embedding-based retrieval on all

datasets except TOEFL-QA, and tie on Coursera with a correctness of 35.19%. On TOEFL-

QA, embeddings achieve 65% correct versus 46.62% for full-text search (an 18.38% advantage).

31

Results

Only on the QuALITY dataset passing chunks from embeddings results performed better, in

all other cases passing the full document to the LLM yielded better results.

The most substantial gaps are observed on multi-hop reasoning datasets. 2WikiMultiHopQA

exhibits the largest disparity (62.59% vs. 19.38%, a 43.21% difference), followed by Multi

FieldQA (73.55% vs. 35.54%, a 38.01% difference) and HotpotQA (64.50% vs. 31.87%, a 32.63%

difference). For 2WikiMultiHopQA and MultiFieldQA, keyword-based matching appears to

provide more reliable retrieval than semantic similarity.

Mid-range gaps are observed on MultiDoc2Dial (37.97% vs. 17.09%, a 20.88% difference) and

QuALTY (44.38% vs. 31.13%, a 13.25% difference). Smaller gaps appear on MuSiQue (40.50%

vs. 34.62%, a 5.88% difference), Naturalquestion (51.85% vs. 48.15%, a 3.70% difference),

QASPER (26.62% vs. 22.00%, a 4.62% difference), and NarrativeQA (18.41% vs. 13.75%, a

4.66% difference), while Coursera is a tie at 35.19%.

Across all datasets, full-text search approaches outperform embeddings by an average of

13.50%.

32

Results

D
a
ta

se
t

S
e
a
rc

h
 E

n
g
in

e

R
e
tr

ie
v
e
r

R
e
ra

n
k
e
d

D
o
c
 R

e
c
a
ll

%
 C

o
rr

e
c
t

%
 P

a
rt

ia
l

%
 C

o
rr

e
c
t+

P
a
rt

ia
l

A
v
g
 R

e
tr

ie
v
a
l
(s

)

A
v
g
 C

o
m

p
le

ti
o
n
 (

s)

A
v
g
 R

e
sp

o
n
se

 (
s)

Embeddings Fulldocs No 18.62% 19.38% 1.38% 20.75% 0.5817 8.1221 8.7043
2WikiMultihopQA

Typesense Keyword No 82.67% 62.59% 1.50% 64.09% 0.8358 8.7734 9.6093

Embeddings Fulldocs No 48.15% 35.19% 38.89% 74.07% 0.4420 8.3087 8.7509
Coursera

Typesense Keyword Yes 50.00% 35.19% 42.59% 77.78% 6.1540 22.3476 28.5016

Embeddings Fulldocs No 33.88% 31.87% 0.88% 32.75% 0.4864 12.3024 12.7892
HotpotQA

Typesense Search Yes 76.50% 64.50% 1.50% 66.00% 1.1555 4.2944 5.4500

Embeddings Fulldocs Yes 22.15% 17.09% 5.70% 22.78% 31.4385 3.9699 35.4089
MultiDoc2Dial

Meilisearch Keyword Yes 65.82% 37.97% 12.66% 50.63% 3.8125 24.7262 28.5387

Embeddings Fulldocs Yes 39.67% 35.54% 1.65% 37.19% 22.3970 6.8473 29.2445
MultiFieldQA

Meilisearch Keyword No 82.64% 73.55% 4.96% 78.51% 0.2541 9.3839 9.6380

Embeddings Fulldocs Yes 44.75% 34.62% 2.12% 36.75% 25.0087 13.5106 38.5196
MuSiQue

Meilisearch Search Yes 50.75% 40.50% 1.62% 42.12% 2.7113 11.6012 14.3124

Embeddings Fulldocs Yes 27.50% 13.75% 1.12% 14.88% 38.1082 6.5069 44.6156
NarrativeQA

Meilisearch Passthrough No 40.67% 18.41% 2.11% 20.52% 0.2267 8.4513 8.6781

Embeddings Fulldocs Yes 70.09% 48.15% 5.70% 53.85% 10.0871 11.9983 22.0855
Naturalquestion

Meilisearch Keyword Yes 84.05% 51.85% 5.70% 57.55% 3.9187 13.7215 17.6403

Embeddings Fulldocs Yes 24.38% 22.00% 9.00% 31.00% 13.4800 8.7037 22.1838
QASPER

Meilisearch Keyword Yes 33.38% 26.62% 10.25% 36.88% 2.9298 8.4380 11.3678

Embeddings Chunk No 34.44% 31.13% 0.12% 31.25% 0.2256 1.2094 1.4350
QuALTY

Meilisearch Keyword Yes 53.62% 44.38% 0.12% 44.50% 4.0963 11.4563 15.5526

Embeddings Fulldocs Yes 71.00% 65.00% 5.75% 70.75% 22.8609 5.1679 28.0291
TOEFL-QA

Meilisearch Keyword Yes 50.88% 46.62% 6.38% 53.00% 4.4158 13.4178 17.8336

Table 5: Results for the best Full-Text Search configuration (One of BM25-based SQLite Full-Text

Search, Meilisearch or Typesense) vs. the best embedding-based configuration. Doc Recall shows the

percentage of questions where the gold document was retrieved. Values marked in dark green are the

best overall, values in light green are the best per search engine, values marked dark red are the worst

overall, values in light red are the worst per search engine - for configurations except Golden and None.

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time,

average completion time, and average response time, lower is better.

33

Results

Best Embeddings approach
Best Full-Text Search approach

2W
ik

iM
u
lt

ih
op

Q
A

C
ou

rs
er

a

H
ot

p
ot

Q
A

M
u
lt

iD
o
c2

D
ia

l

M
u
lt

iF
ie

ld
Q

A

M
u
S
iQ

u
e

N
ar

ra
ti

ve
Q

A

N
at

u
ra

lq
u
es

ti
on

Q
A

S
P

E
R

Q
u
A

L
T

Y

T
O

E
F
L
-Q

A

Dataset

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

%
 C

or
re

ct

19
.3

8%

35
.1

9%

31
.8

7%

17
.0

9%

35
.5

4%

34
.6

2%

13
.7

5%

48
.1

5%

22
%

31
.1

3%

65
%

62
.5

9%

35
.1

9%

64
.5

%

37
.9

7%

73
.5

5%

40
.5

%

18
.4

1%

51
.8

5%

26
.6

2%

44
.3

8%

46
.6

2%

Figure 3: The best embedding-based and best Full-Text search approaches with their % Correct, as

shown in Table 5.

4.1.2 Statistical Significance

To verify that the observed performance differences are not due to chance, statistical tests were

performed on the key comparison between full-text search and embedding-based retrieval.

The best full-text search configuration (Meilisearch with keyword generation and reranking)

achieved 40.44% accuracy (95% CI: 39.23%–41.65%, n=6,284), compared to 31.19% (95% CI:

30.06%–32.35%, n=6,284) for the best embedding-based configuration (full document retrieval

with reranking). The confidence intervals were computed using the Wilson score method, which

provides more accurate coverage for proportions than the normal approximation. The non-

overlapping confidence intervals indicate the difference is statistically meaningful.

Since both methods answered the same set of questions, McNemar’s test for paired data

was performed. McNemar’s test is designed for paired nominal data and specifically examines

whether the disagreements between methods are systematic. The test focuses on questions where

the two methods disagreed and determines whether one method systematically outperforms the

other. The result (𝜒2 = 163.2, p < 0.001) confirms that full-text search systematically outper

forms embeddings: FTS correctly answered 1,321 questions that embeddings missed, while

34

Results

embeddings only succeeded on 740 questions where FTS failed, representing a net advantage

of 581 questions (9.2% of the test set).

These results demonstrate that the performance advantage of full-text search over embedding-

based retrieval is not attributable to random variation but represents a genuine and substantial

difference in retrieval effectiveness.

4.1.3 Document Recall

To separate retrieval failure from generation failure, document recall was measured for each

retrieval configuration, shown in the Doc Recall column in all results tables (Table 4, Table 3,

Table 6). Document recall measures if the source document containing the answer was retrieved,

regardless of whether the LLM generated a correct answer from it. It can differ between config

urations with and without reranking, even when using the same search engine and retriever,

see Section 5.6 for an explanation.

The Golden retriever achieves 100% recall by definition, while the None retriever achieves

0% as expected. Looking at the results per retrieval configuration in Table 3, even the Golden

retriever only achieves 69.40% answer correctness.

Among the evaluated retrieval methods, Meilisearch with keyword generation achieved the

highest document recall at 56.25%, followed by Typesense with keyword generation achieved

46.21% document recall. Embedding-based retrieval peaked at 40.12% document recall with

chunk retrieval, while only 37.65% when retrieving full documents, both with reranking. Full-

text search with chunk retrieval showed the lowest recall at just 0.52%.

Figure 4 visualizes the relationship between document recall and answer correctness across

retrieval configurations. The scatter plot shows a positive correlation: configurations with higher

document recall tend to achieve higher correctness rates. The strength of this relationship varies

by search engine type: embedding-based configurations at approximately 40% recall achieve

17-25% correctness, while full-text search engines show higher correctness rates at comparable

recall levels.

For the case where embedding search was used but the full document was passed to the LLM,

the results appear to be in line with FTS methods, even though they achieved lower % correct.

35

Results

Embeddings Full-Text Search

Meilisearch Typesense

Passthrough Keyword

Chunk Search

Full Document

Reranked Not Reranked

0 5 10 15 20 25 30 35 40 45 50 55 60
Document Recall (%)

0

5

10

15

20

25

30

35

40

45

%
 C

or
re

ct

Figure 4: The relationship between document recall and % correct. Each point in the diagram represents

a search engine configuration, colored by search engine type and distinguished by shape. Golden and

None baselines are excluded.

4.2 Timing Analysis

Analyzing the response times of different configurations was done to see whether the retrieval

method used has an effect on response times. If one retrieval method would turn out to be

excellent in retrieval quality but takes a really long time to answer queries, that would render it

unusable for real-time chat applications – even though the qualitative results might be better.

Or, viewed from another angle, if the retrieval quality is high but response times are poor,

further research could be conducted to see if the response time can be improved.

It is expected that adding different RAG mechanisms adds latency, especially when combined

with reranking. Latency with the None retriever should be almost zero, with the Golden retriever

it should be near-zero.

The timing measurements reported in this section are descriptive observations. The exper

iment relied on a university-hosted GPU instance where other users may have accessed the same

resources simultaneously, introducing variability in response times. Therefore, timing results

should be interpreted as indicative patterns rather than precise performance benchmarks.

Timing results across search engines (as shown in Table 3) revealed consistent patterns across

configurations. Chunk-based retrieval consistently demonstrated the fastest retrieval times,

likely because less data needed to be retrieved and transferred from the database. Full-text

search with chunks showed the fastest overall performance.

The best-performing configurations when looking at % Correct, Meilisearch and Typesense

with keyword retrieval, exhibited notably longer total response times compared to other

36

Results

methods in the observed data. All of this can be attributed to the longer completion time when

using these search engines.

In the observed measurements, Meilisearch keyword retrieval showed average total response

times of 26.97 seconds with reranking and 10.07 seconds without reranking. Of this, 22.81

seconds have been spent in generation with and 9.78 seconds without reranking. Typesense

showed an average of 36.28 seconds for keyword search with reranking and 9.70 seconds without.

Similarly to Meilisearch, 28.92 seconds of the 36.28 seconds have been spent on average on the

generation with reranking, vs. 8.50 seconds without reranking.

This extended generation time suggests that more documents were retrieved and processed

by the language model. Figure 5 shows the the generation time compared to the number of

retrieved documents for Typesense with keyword generation reranked as configuration with

the longest completion times. The diagram shows an upward trend of the median response

time (indicated by the line in the box charts), suggesting an association between number of

documents retrieved and response time, which is consistent with this hypothesis.

To control for the potential confounding effect of different document return counts across

configurations, Figure 6 presents the Pearson correlation between average content length and

average completion time. Content length serves as a proxy for document return volume, since

configurations returning more documents would be expected to have higher total content length.

0 1 2 3 4 5 6 7 8 9 10

Number of Retrieved Documents

0

20

40

60

80

100

120

140

160

C
om

p
le

ti
on

 T
im

e
(s

ec
on

d
s)

Figure 5: The number of retrieved documents vs. the completion time in seconds for the Typesense

configuration with keyword search and reranking.

37

Results

C
orrelation

Avg C
ontent Length (#

 characters)

Avg C
om

pletion T
im

e (seconds)

Typesense + Search

Typesense + Passthrough (Reranked)

Full-Text Search + Search (Reranked)

Full-Text Search + Passthrough

Typesense + Passthrough

Typesense + Search (Reranked)

Full-Text Search + Passthrough (Reranked)

Meilisearch + Search

Meilisearch + Search (Reranked)

Meilisearch + Passthrough (Reranked)

Typesense + Keyword

Meilisearch + Passthrough

Typesense + Keyword (Reranked)

Full-Text Search + Keyword

Meilisearch + Keyword

Meilisearch + Keyword (Reranked)

Full-Text Search + Search

Full-Text Search + Keyword (Reranked)

Golden + Passthrough

R
et

ri
ev

a
l
C

on
fi
g
u
ra

ti
o
n

0.9522 178206 5.38

0.9482 210143 6.27

0.9476 250993 7.59

0.9473 257065 7.60

0.9464 209006 6.26

0.9428 179181 5.68

0.9203 250600 7.81

0.9042 346208 9.87

0.9024 346010 10.16

0.8901 378103 10.88

0.8872 328291 9.33

0.8421 380801 10.68

0.8070 337380 31.71

0.7867 389756 10.78

0.7802 368573 10.04

0.5769 369645 23.51

0.4008 258827 7.92

0.3074 365449 15.60

0.3001 53185 1.86

−2

−1

0

1

2

3

Figure 6: Pearson correlation between average content length and average completion time per retrieval

configuration. Content length is defined as the sum of character counts across all documents used to

answer a question. Chunk-based retrieval configurations, including embedding-based approaches, are

excluded because character counts reflect full document lengths rather than the subset of text contained

in retrieved chunks.

The analysis in Figure 6 reveals that document return volume does not systematically explain

performance differences between retrieval methods. No clear correlation between average content

length and completion time is visible for Typesense or Meilisearch configurations. While the

Typesense keyword search with reranking configuration shows a high correlation of 0.8070,

this does not explain why this configuration’s completion times are approximately three times

higher than other configurations with comparable or greater retrieved content. The causal

mechanism for these timing differences remains unclear; infrastructure variability from shared

GPU resources may be a contributing factor. This finding suggests that the observed accuracy

38

Results

differences between full-text search and embedding-based retrieval are not confounded by

systematic differences in document return counts.

Golden and None retrievers expectedly demonstrated the fastest performance since they spent

practically no time in retrieval at all and only need to return the correct or no document.

Looking at observed retrieval times per dataset, the results varied considerably across datasets

and configurations. In the measurements, NaturalQuestion exhibited the longest average

response time at 40 seconds with the Typesense keyword search and reranking. The observed

time with Meilisearch for the same dataset resulted in observed averages of 17.6 and 8.5 seconds

with and without reranking.

MultiFieldQA, which achieved the highest overall score, had an observed average response

time of 9.6 seconds for the best-performing configuration (Meilisearch with keyword and no

reranking). With reranking, the otherwise same configuration returned an average of 32 seconds.

4.3 Performance by Dataset

Examining query performance on a per-dataset basis helps identify whether some document

collections yield better results than others, irrespective of the retrieval method used. It is

expected that all datasets will show improvement with retrieval compared to the None baseline,

though some may benefit more than others. The results might show that some datasets work

better with embeddings and some work better with full-text search.

Table 4 summarizes performance across datasets, revealing substantial performance variation

across datasets. Because the results represent aggregates across all configurations, the results are

lower than the best results from Table 3. HotpotQA achieved the highest correctness at 33.21%,

while NarrativeQA achieved the lowest at 9.60%. This represents a substantial performance gap

across different datasets.

The performance distribution across datasets suggests that certain question types or docu

ment structures are more amenable to retrieval-augmented generation than others. It could also

mean that the quality of documents in the dataset is higher for some than others.

4.4 Top 3 Configurations by Dataset

Going deeper into the results from Section 4.3, the top 3 configurations by dataset will

reveal whether full-text search works better than embedding-based search in general or only

for a certain type of questions. Since the overall results turned out to favor full-text search

(Meilisearch with keyword generation), it is expected that this pattern continues when investi

gating the top 3 configuration by dataset.

Because it would be impractical to look at all results across all datasets at once, only the top

3 have been selected. Individual results for all datasets and all configurations can be found in

Appendix A.4.

39

Results

D
a
ta

se
t

R
a
n
k

S
e
a
rc

h
 E

n
g
in

e

R
e
tr

ie
v
e
r

R
e
ra

n
k
e
d

D
o
c
 R

e
c
a
ll

%
 C

o
rr

e
c
t

%
 P

a
rt

ia
l

%
 C

o
rr

e
c
t+

P
a
rt

ia
l

A
v
g
 R

e
tr

ie
v
a
l
(s

)

A
v
g
 C

o
m

p
le

ti
o
n
 (

s)

A
v
g
 R

e
sp

o
n
se

 (
s)

- Golden Passthrough No 100.00% 73.82% 1.87% 75.69% 0.0078 1.8018 1.8097

- None Passthrough No 0.00% 8.73% 0.62% 9.35% 0.0000 0.9279 0.9279

1 Typesense Keyword No 82.67% 62.59% 1.50% 64.09% 0.8358 8.7734 9.6093

2 Search Yes 78.38% 58.88% 1.25% 60.12% 2.5100 8.7439 11.2540

2WikiMultihopQA

Meilisearch
3 Search No 79.18% 58.48% 1.12% 59.60% 0.0979 8.6500 8.7479

- Golden Passthrough No 100.00% 37.04% 42.59% 79.63% 0.0048 1.5833 1.5880

- None Passthrough No 0.00% 20.37% 46.30% 66.67% 0.0000 1.1910 1.1910

1 Typesense Keyword Yes 50.00% 35.19% 42.59% 77.78% 6.1540 22.3476 28.5016

2 Embeddings Fulldocs No 48.15% 35.19% 38.89% 74.07% 0.4420 8.3087 8.7509

Coursera

3 Meilisearch Keyword Yes 72.22% 33.33% 42.59% 75.93% 4.0349 23.6872 27.7221

- Golden Passthrough No 100.00% 85.38% 1.36% 86.74% 0.0086 1.9872 1.9959

- None Passthrough No 0.00% 9.79% 0.87% 10.66% 0.0000 1.3115 1.3115

1 Search Yes 76.50% 64.50% 1.50% 66.00% 1.1555 4.2944 5.4500

2 Search No 77.20% 62.83% 0.87% 63.69% 0.1213 4.1882 4.3095

HotpotQA

Typesense

3 Passthrough Yes 73.00% 62.38% 0.88% 63.25% 2.0931 4.7807 6.8739

- Golden Passthrough No 100.00% 53.80% 13.92% 67.72% 0.0028 1.5098 1.5127

- None Passthrough No 0.00% 1.90% 1.90% 3.80% 0.0000 0.8614 0.8614

1 Keyword Yes 65.82% 37.97% 12.66% 50.63% 3.8125 24.7262 28.5387
Meilisearch

2 Keyword No 64.56% 34.81% 14.56% 49.37% 0.2984 8.2198 8.5182

MultiDoc2Dial

3 Typesense Keyword Yes 51.90% 33.54% 12.66% 46.20% 10.5234 16.6333 27.1570

- Golden Passthrough No 100.00% 85.12% 9.09% 94.21% 0.0050 1.6034 1.6085

- None Passthrough No 0.00% 1.65% 0.00% 1.65% 0.0000 0.7428 0.7428

1 Keyword No 82.64% 73.55% 4.96% 78.51% 0.2541 9.3839 9.6380
Meilisearch

2 Keyword Yes 83.47% 66.12% 7.44% 73.55% 3.4251 28.6092 32.0344

MultiFieldQA

3 Typesense Keyword Yes 66.94% 55.37% 5.79% 61.16% 6.4518 25.2383 31.6901

- Golden Passthrough No 100.00% 58.08% 2.10% 60.17% 0.0099 2.7316 2.7416

- None Passthrough No 0.00% 8.38% 1.23% 9.62% 0.0000 1.3640 1.3640

1 Meilisearch Search Yes 50.75% 40.50% 1.62% 42.12% 2.7113 11.6012 14.3124

2 Search Yes 44.75% 40.00% 1.75% 41.75% 2.0991 7.1443 9.2435

MuSiQue

Typesense
3 Search No 45.75% 38.35% 2.10% 40.44% 0.2193 6.7612 6.9805

- Golden Passthrough No 100.00% 43.23% 5.34% 48.57% 0.0315 2.4032 2.4347

- None Passthrough No 0.00% 1.36% 0.00% 1.36% 0.0000 0.7501 0.7501

1 Passthrough No 40.67% 18.41% 2.11% 20.52% 0.2267 8.4513 8.6781

2 Passthrough Yes 44.12% 17.75% 3.75% 21.50% 5.9395 9.4647 15.4044

NarrativeQA

Meilisearch

3 Keyword Yes 42.62% 17.75% 2.62% 20.38% 4.8547 17.1963 22.0510

- Golden Passthrough No 100.00% 66.38% 3.99% 70.37% 0.0120 1.8048 1.8168

- None Passthrough No 0.00% 13.68% 3.70% 17.38% 0.0000 0.9976 0.9976

1 Keyword Yes 84.05% 51.85% 5.70% 57.55% 3.9187 13.7215 17.6403Meilisearch

Naturalquestion

40

Results

D
a
ta

se
t

R
a
n
k

S
e
a
rc

h
 E

n
g
in

e

R
e
tr

ie
v
e
r

R
e
ra

n
k
e
d

D
o
c
 R

e
c
a
ll

%
 C

o
rr

e
c
t

%
 P

a
rt

ia
l

%
 C

o
rr

e
c
t+

P
a
rt

ia
l

A
v
g
 R

e
tr

ie
v
a
l
(s

)

A
v
g
 C

o
m

p
le

ti
o
n
 (

s)

A
v
g
 R

e
sp

o
n
se

 (
s)

2 Keyword No 82.05% 49.00% 6.27% 55.27% 0.2783 8.3035 8.5819

3 Embeddings Fulldocs Yes 70.09% 48.15% 5.70% 53.85% 10.0871 11.9983 22.0855

- Golden Passthrough No 100.00% 68.90% 15.85% 84.76% 0.0044 1.5973 1.6017

- None Passthrough No 0.00% 0.24% 0.12% 0.37% 0.0000 0.7120 0.7120

1 Keyword Yes 33.38% 26.62% 10.25% 36.88% 2.9298 8.4380 11.3678
Meilisearch

2 Keyword No 34.02% 25.85% 10.00% 35.85% 0.1571 7.4543 7.6114

QASPER

3 Typesense Keyword Yes 23.88% 24.75% 7.50% 32.25% 3.7813 20.8751 24.6565

- Golden Passthrough No 100.00% 71.81% 0.74% 72.55% 0.0060 1.6074 1.6135

- None Passthrough No 0.00% 4.29% 0.00% 4.29% 0.0000 0.7746 0.7746

1 Keyword Yes 53.62% 44.38% 0.12% 44.50% 4.0963 11.4563 15.5526

2 Keyword No 50.98% 40.20% 0.37% 40.56% 0.3843 9.1129 9.4972

QuALTY

Meilisearch

3 Search Yes 37.38% 33.62% 0.50% 34.12% 3.3260 6.2848 9.6108

- Golden Passthrough No 100.00% 88.89% 7.24% 96.13% 0.0011 1.1093 1.1105

- None Passthrough No 0.00% 19.60% 3.12% 22.72% 0.0000 0.8422 0.8422

1 Fulldocs Yes 71.00% 65.00% 5.75% 70.75% 22.8609 5.1679 28.0291

2 Chunk No 71.16% 63.05% 5.87% 68.91% 0.2161 1.2062 1.4224

TOEFL-QA

Embeddings

3 Chunk Yes 71.12% 62.50% 6.12% 68.62% 0.2963 1.5969 1.8932

Table 6: The top 3 Search engines with the highest % Correct grouped per dataset, including the Golden

and None results for reference. Doc Recall shows the percentage of questions where the gold document

was retrieved. Values marked in dark green are the best overall, values in light green are the 2nd best

overall, values marked dark red are the worst overall, values in light red are the 2nd worst overall. For Doc

Recall, % Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time, average

completion time, and average response time, lower is better. Marked values do not include the Golden

and None results.

Table 6 presents the three best-performing search engine configurations for each dataset, addi

tionally the Golden and None baselines for reference. The results show variation in performance

across different datasets and configurations.

It is directly clear that Typesense and Meilisearch consistently rank among the top performers

across most datasets. This is in line with the results from Table 3.

MultiFieldQA delivered the best overall result across all datasets. Meilisearch with keyword

search and without reranking achieved 73.55% correct answers, approaching the Golden baseline

of 85.12% for this dataset. It achieved 66.12% correct answers with keyword search and

reranking as the second best, showing a gap of 7.43% to the configuration without reranking.

This suggests that reranking may actually harm performance in certain contexts.

41

Results

Typesense with keyword search and reranking reached 55.37% correct answers as the third-

best configuration for this dataset.

NarrativeQA resulted in the worst overall score for a dataset with only 18.41% correctness

with Meilisearch direct search without reranking. This indicates that NarrativeQA represents

a particularly challenging dataset for retrieval-augmented generation.

However, even with Golden retrieval, this dataset only performed at 43.23% correctness and

is thus the second-worst for Golden retrieval, indicating a challenging dataset in general for

LLMs, not entirely only for RAG.

For the Coursera dataset, the number of fully correct answers with the Golden baseline

was 37.04%, while the best search engine (Typesense with keywords and reranking) achieved

35.19%, demonstrating close proximity to the baseline. Notably, the None baseline for the same

dataset achieved 20.37% correct answers, suggesting that this dataset contains questions that

are already partially represented in the world knowledge of the used gpt-oss-120b LLM.

While Meilisearch and Typesense dominate the top 3 results across datasets, only the results

from the TOEFL-QA dataset could be answered better with an embeddings approach with

a score of 65.00% for full-document embeddings with reranking. Chunk-based embeddings

without reranking achieved 63.05% correct answers. With reranking, the same chunk-based

configuration achieved 62.50%, about 0.55% lower than without reranking. In the same dataset,

the best performing configurations for Meilisearch and Typesense (both with keyword search

and reranking) achieved only a score of 46.6% and 45.6%, showing a huge gap of roughly 18%

between embeddings and full-text search approaches.

On the Coursera dataset, embedding-based search with full documents returned performed

very similar to Typesense and Meilisearch, each with keyword search reranked.

The highest percentage of partially correct answers was observed in the Coursera dataset,

where Meilisearch with keywords and without reranking achieved 46.30% partially correct

responses. When combining correct and partially correct results (% Correct + Partial), this

configuration reached 77.78%, approaching the Golden baseline of 79.63% for this dataset for

% Correct + Partial.

To highlight the difference of different results per dataset, Figure 7 shows the performance per

dataset for the overall best, Meilisearch with keyword enhancement and reranked. It becomes

clear that there are huge performance differences between the best and worst datasets and

between the datasets overall.

42

Results

2W
ik

iM
u
lt

iH
op

Q
A

C
o
u
rs

er
a

H
o
tp

o
tQ

A

M
u
lt

iD
o
c2

D
ia

l

M
u
lt

iF
ie

ld
Q

A

M
u
S
iQ

u
e

N
ar

ra
ti

v
eQ

A

N
at

u
ra

lQ
u
es

ti
on

Q
A

S
P

E
R

Q
u
A

L
IT

Y

T
O

E
F
L
-Q

A

Dataset

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

P
er

fo
rm

an
ce

 p
er

 d
at

a
se

t
in

 %

55%

33.3%

47.4%

38%

66.1%

37.4%

17.8%

51.9%

26.6%

44.4%
46.6%

Figure 7: The performance per dataset for the overall best retrieval configuration as shown in Table 3:

Meilisearch with keyword search reranked.

4.4.1 Baseline Performance With Perfect Retrieval

The gap between Golden retrieval and best-performing retrieval configurations varied consid

erably across datasets. Figure 8 shows this difference, plotted by dataset.

It is expected that larger gaps indicate more room for improvement in retrieval quality. This

helps contextualize whether current retrieval performance is already perfect, or if substantial

improvements can still be made to achieve retrieval quality.

Most notable are the results from the QASPER and Coursera dataset, where QASPER has

the biggest difference of 42.28%, and Coursera has only 1.85% difference.

The other datasets perform between 10% and 30%.

43

Results

2W
ik

iM
u
lt

iH
op

Q
A

C
o
u
rs

er
a

H
o
tp

o
tQ

A

M
u
lt

iD
o
c2

D
ia

l

M
u
lt

iF
ie

ld
Q

A

M
u
S
iQ

u
e

N
ar

ra
ti

v
eQ

A

N
at

u
ra

lQ
u
es

ti
on

Q
A

S
P

E
R

Q
u
A

L
IT

Y

T
O

E
F
L
-Q

A

Dataset

0

5

10

15

20

25

30

35

40
P
er

fo
rm

an
ce

 d
iff

er
en

ce
 i
n
 %

11.23%

1.85%

20.88%

15.83%

11.57%

17.58%

24.82%

14.53%

42.28%

27.43%
25.84%

Figure 8: The performance difference from % Correct between Golden and best-performing configu

ration, per dataset.

4.4.2 Baseline Performance Without Retrieval

To isolate the contribution of retrieval to question-answering performance, the baseline results

obtained with the None retriever were examined. Certain data sets demonstrated substantial

performance even without any retrieval (None baseline). Should retrieval prove unnecessary

for generating satisfactory results, the entire RAG architecture could be eliminated, greatly

simplifying the system. The None baseline is evaluated to determine whether this is the case.

Coursera and TOEFL-QA scored around 20% correctness, closely followed by NaturalQues

tion with 13.68% and HotpotQA with almost 10%. 2WikiMultiHopQA and MuSiQue both

scored around 8%. QuALITY sits in the middle with 4.29% retrieval correctness. Finally,

MultiDoc2Dial, MultiFieldQA, NarrativeQA and QASPER scored only around 1%, indicating

that performance can be enhanced by a lot with retrieval versus without retrieval.

44

Results

4.5 Overlap in Correctly Retrieved Documents Between Search En

gines

To determine the potential for hybrid retrieval approaches which combine the results from

multiple search configurations, the overlap in correctly retrieved documents between different

search engine configurations was analyzed using the Jaccard index. The Jaccard index measures

the similarity between two sets as the size of their intersection divided by the size of their union,

ranging from 0 (no overlap) to 1 (complete overlap).

Pairwise Jaccard statistics across all search engine configurations show huge variation: the

average Jaccard index is 0.230, with a minimum of 0.002 and a maximum of 112. The low average

indicates that different search engine configurations retrieve different documents correctly,

suggesting that combining engines could improve overall retrieval performance.

The best single engine configuration, Meilisearch with Keyword search and no reranking,

retrieved the correct document for 3,570 questions. When combining all engine configurations

(the union of correctly retrieved documents), 5,616 questions had the correct document retrieved

by at least one configuration. This represents 89.4% of the total 6,284 questions and indicates

a theoretical potential improvement of 33.15% over the best single engine.

Table 7 presents the top 30 search engine combinations ranked by potential retrieval benefit.

The benefit percentage measures the gain from combining two engines compared to using the

better one alone. It is calculated as:

Benefit = union size − max(size𝐴, size𝐵)
max(size𝐴, size𝐵)

× 100

Unlike the Jaccard index, which only measures set similarity, the benefit percentage directly

answers how many additional correct retrievals a combination would provide over using the

best single engine alone.

The highest benefit of 75.0% is achieved by combining BM25-based full-text search with

keyword generation and Typesense chunk retrieval both reranked. Notably, Typesense chunk

retrieval performed poorly as an individual configuration (see Section 4.1), yet it retrieves

documents that BM25-based full-text search misses. The second-highest benefit of 73.8% comes

from the same BM25 configuration combined with Typesense chunk retrieval without reranking.

The third-highest benefit of 73.0% combines embeddings with keyword search and BM25 full-

text search with keyword generation.

Examining the top 30 combinations shows that embedding-based configurations frequently

appear in high-benefit pairings. Combinations of embeddings with various full-text search

methods (BM25, Meilisearch, Typesense) consistently show benefits above 55%. This pattern

is visible in the benefit percentage heatmap shown in Figure 9.

12Combining Chunk-based with and without reranking resulted in a Jaccard index of 1.0, which is not
surprising.

45

Results

Engine 1 Engine 2

J
a
c
c
a
rd

O
v
e
rl

a
p

E
x
c
lu

si
v
e

B
e
n
e
fi
t

FTS Keyword Reranked Typesense Chunk Reranked 0.076 99 1210 75.0%

FTS Keyword Reranked Typesense Chunk 0.075 99 1222 73.8%

Embeddings Keyword FTS Keyword 0.046 42 868 73.0%

Embeddings Search Reranked FTS Passthrough Reranked 0.156 469 2533 72.8%

Embeddings Keyword Reranked FTS Keyword 0.037 33 871 71.9%

Embeddings Search FTS Passthrough Reranked 0.158 478 2549 71.2%

Embeddings Search Reranked FTS Search Reranked 0.138 405 2536 69.6%

FTS Keyword Reranked Meilisearch Chunk Reranked 0.085 114 1221 69.2%

FTS Keyword Reranked Meilisearch Chunk 0.085 114 1228 68.6%

Embeddings Search FTS Search Reranked 0.147 432 2516 66.7%

Embeddings Full Docs Typesense Passthrough 0.222 758 2657 63.5%

Embeddings Full Docs Typesense Passthrough Reranked 0.226 777 2658 61.8%

Embeddings Full Docs Reranked Meilisearch Passthrough 0.234 888 2914 60.7%

FTS Keyword Typesense Chunk Reranked 0.062 74 1126 60.4%

FTS Keyword Typesense Chunk 0.061 74 1138 59.5%

Embeddings Search Reranked FTS Search 0.117 322 2436 59.1%

Embeddings Search Reranked FTS Passthrough 0.114 312 2430 58.1%

Embeddings Search Typesense Passthrough 0.171 562 2728 57.9%

Embeddings Chunk Reranked Typesense Search 0.262 1043 2932 57.7%

Embeddings Full Docs Reranked Meilisearch Passthrough Reranked 0.244 911 2818 57.6%

Embeddings Search Reranked Typesense Passthrough 0.163 535 2748 57.5%

Embeddings Search FTS Search 0.119 331 2452 57.4%

Embeddings Full Docs Reranked Typesense Search Reranked 0.250 966 2901 56.7%

Embeddings Chunk Typesense Search 0.265 1055 2932 56.7%

Embeddings Chunk Reranked Typesense Search Reranked 0.263 1039 2910 56.6%

Embeddings Chunk Typesense Search Reranked 0.262 1039 2934 56.1%

Embeddings Search Typesense Passthrough Reranked 0.174 578 2735 56.1%

Embeddings Search FTS Passthrough 0.120 330 2428 56.0%

Embeddings Full Docs Reranked Typesense Search 0.249 970 2923 55.9%

FTS Keyword Meilisearch Chunk Reranked 0.071 87 1141 55.6%

Table 7: Top 30 search engine combinations ranked by potential retrieval benefit. Overlap shows

questions where both engines retrieved the correct document. Exclusive shows questions where only one

of the two engines retrieved the correct document. Benefit percentage indicates improvement over the

better single engine.

46

Results

E
m

b
 C

h
k

E
m

b
 C

h
k
 R

E
m

b
 F

u
ll

E
m

b
 F

u
ll
 R

E
m

b
 K

w
d

E
m

b
 K

w
d
 R

E
m

b
 S

rc
h

E
m

b
 S

rc
h
 R

F
T

S
 C

h
k

F
T

S
 C

h
k
 R

F
T

S
 K

w
d

F
T

S
 K

w
d
 R

F
T

S
 P

as
s

F
T

S
 P

as
s

R

F
T

S
 S

rc
h

F
T

S
 S

rc
h
 R

M
ei

li
 C

h
k

M
ei

li
 C

h
k
 R

M
ei

li
 K

w
d

M
ei

li
 K

w
d
 R

M
ei

li
 P

as
s

M
ei

li
 P

as
s

R

M
ei

li
 S

rc
h

M
ei

li
 S

rc
h
 R

T
y
p
e

C
h
k

T
y
p
e

C
h
k
 R

T
y
p
e

K
w

d

T
y
p
e

K
w

d
 R

T
y
p
e

P
as

s

T
y
p
e

P
as

s
R

T
y
p
e

S
rc

h

T
y
p
e

S
rc

h
 R

Search Engine

Emb Chk

Emb Chk R

Emb Full

Emb Full R

Emb Kwd

Emb Kwd R

Emb Srch

Emb Srch R

FTS Chk

FTS Chk R

FTS Kwd

FTS Kwd R

FTS Pass

FTS Pass R

FTS Srch

FTS Srch R

Meili Chk

Meili Chk R

Meili Kwd

Meili Kwd R

Meili Pass

Meili Pass R

Meili Srch

Meili Srch R

Type Chk

Type Chk R

Type Kwd

Type Kwd R

Type Pass

Type Pass R

Type Srch

Type Srch R

S
ea

rc
h
 E

n
g
in

e

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B
en

efi
t

%

Figure 9: Benefit percentage heatmap showing potential gain from combining pairs of search en

gines. Abbreviations: Emb=Embeddings, FTS=Full-Text Search, Meili=Meilisearch, Type=Typesense,

Chk=Chunk, Kwd=Keyword, Pass=Passthrough, Srch=Search, Full=Full Document, R=Reranked.

The heatmap reveals that most pairwise combinations provide limited benefit, with the majority

of cells showing low percentages near zero. Few combinations exceed 50% benefit. Full-text

search with chunk retrieval shows uniformly low benefit when combined with any other

configuration, consistent with the poor individual performance of this configuration observed

in Section 4.1.

The combinations of embedding-based methods (the 8 lower rows) with full-text search

methods (left two third columns) show consistently higher benefits than combinations within

the same retrieval paradigm. Embedding-based search with keyword generation in some cases

shows lower benefit when combined with full-text search methods, as both approaches rely on

keyword matching.

4.6 Conclusion

This chapter compared full-text search and embedding-based retrieval across eleven datasets.

The overall results (Section 4.1) established performance bounds: the Golden retriever achieved

47

Discussion

69.40% correctness, while the None retriever baseline achieved 7.65% from parametric knowledge

alone. Meilisearch with keyword search and reranking achieved the best overall performance at

40.44% correctness.

Full-text search outperformed embeddings on all datasets except TOEFL-QA, with Coursera

as a tie, and an average improvement of 13.50%. The gap was particularly pronounced on multi-

hop reasoning datasets such as 2WikiMultiHopQA (43.21% difference) and HotpotQA (32.63%

difference). Chunk-based retrieval with Meilisearch and Typesense fell below the None baseline,

indicating that incorrect chunks actively degrade LLM performance.

The per-dataset analysis (Section 4.3, Section 4.4) revealed substantial variation across

datasets and retrieval configurations, ranging from 73.55% for Meilisearch with keyword search

and no reranking for the MultiFieldQA dataset to 18.41% for Meilisearch with passthrough and

no reranking in the NarrativeQA dataset. Reranking produced mixed results, improving some

configurations while reducing correctness in others.

The overlap analysis (Section 4.5) demonstrated that different retrieval methods correctly

retrieve different documents, with an average Jaccard index of 0.230. Combining all configura

tions theoretically achieves 89.4% document recall, suggesting substantial potential for hybrid

retrieval approaches.

These findings demonstrate that full-text search represents a viable and often superior

alternative to embedding-based retrieval for RAG systems.

5 Discussion
This chapter interprets the experimental results from the previous chapter.

It begins with the overall finding on full-text search performance in Section 5.1, then examines

dataset-specific variations (Section 5.2), reranking effects (Section 5.3), timing implications

(Section 5.4), chunk-based retrieval failures (Section 5.5), document recall and generation

failure (Section 5.6), retrieval dependency (Section 5.7), and the potential for hybrid retrieval

(Section 5.8). The chapter concludes with practical recommendations in Section 5.9.

5.1 Full-Text Search Performance Compared to Embeddings

The results support the hypothesis that full-text search can perform better in a RAG-Setting

than relying on searching through embeddings, though this finding is not universal across

all datasets. Specialized full-text search databases demonstrate competitive or superior perfor

mance relative to embedding-based approaches.

With appropriate query formulation, these dedicated full-text search engines substantially

outperform embedding-based retrieval. Meilisearch with keyword search generation achieved

40.44% correctness compared to the best embedding method at 31.19% correctness, a 9.25%

improvement. Importantly, both full-text search and embedding-based retrieval were tested

with equivalent query preprocessing strategies, including keyword generation. While full-text

48

Discussion

search benefits substantially from keyword preprocessing, embedding-based retrieval actually

performed worse with keyword generation (7.15% correctness) than with direct chunk retrieval

(24.59% correctness). This indicates that the advantage of full-text search with preprocessing

is not due to embeddings lacking equivalent preprocessing. Full-text search appears to be

fundamentally better suited to leverage LLM-generated keywords as search terms.

A notable exception is the TOEFL-QA dataset, where embedding-based retrieval outper

formed full-text search (65.00% vs. 46.62%), demonstrating that semantic search retains

advantages for certain query types requiring deeper language understanding. This exception is

discussed further in Section 5.2 and Section 5.9.

Both Typesense and Meilisearch, which implement search and ranking algorithms beyond

traditional BM25, demonstrated at least comparable performance to SQLite-based full-text

search with BM25, validating their utility as retrieval backends for RAG systems. When

using passthrough or search query modes, the observed ~4% improvement (29.30%–29.60%

vs. 25.27%) is modest enough that it may not generalize without further statistical testing,

which is beyond the scope of this thesis. However, when combined with keyword generation,

the advantage of modern search engines becomes more pronounced, with Meilisearch achieving

40.44% compared to BM25′s best result of 16.12%.

Simple full-text search with BM25 achieves comparable performance of 25.27% when com

bined with reranking compared to embeddings chunk retrieval at 24.59%, with even lower

complexity than having to use an external database like Meilisearch or Typesense.

With embedding-based retrieval, the results vary slightly when the full document was passed

to the LLM. With the full document, a 28.58% correctness was achieved, vs. 24.59% with only

retrieved chunks (both without reranking). This marginal difference indicates the LLM can

generate better answers when it has the full document, but the improvement is not as good as

what other databases achieve.

The difference in Document Recall between full document and chunks can be explained by

the possibility that retrieving full documents may result in a longer total context that pushed

actually relevant documents out of the final list, particularly when those relevant documents

were ranked lower in the retrieval order.

5.2 Dataset-Specific Performance Variation

The substantial performance variation across datasets (overall worst of 18.41% in NarrativeQA

vs overall best of 73.55% in the MultiFieldQA dataset, each with Meilisearch and the best

result per dataset) indicates that retrieval-augmented generation effectiveness depends heavily

on dataset characteristics. This suggests that certain types of questions, document structures,

or reasoning requirements are more amenable to retrieval augmentation. Understanding these

characteristics when building RAG systems could inform both system design and dataset

selection for future work.

49

Discussion

For the NarrativeQA dataset, the Golden retriever achieves 43.23% correct answers (the

lowest Golden baseline among all datasets), and the best-performing search engine reaches only

18.41% correctness. This dataset shows poor suitability for retrieval-based question answering

overall. The low performance for the best overall configuration suggests that NarrativeQA

involves contexts that are too large or complex for effective retrieval, or that the nature of

narrative questions requires different retrieval strategies than those employed in this thesis.

5.3 Reranking Effects

The marginal or sometimes negative effects of reranking (particularly for Meilisearch and Type

sense keyword search) suggest that modern search engines may already provide sufficiently good

ranking. For MultiFieldQA, Meilisearch with keyword search and reranking (66.12% correct)

performed worse than the same configuration without reranking (73.55% correct), potentially

by demoting relevant documents.

Other reranking approaches may yield different results, though Jina Reranker v3 represents

current state-of-the-art performance. The marginal improvements observed suggest that for

full-text search engines like Meilisearch and Typesense, the initial ranking quality is already

sufficiently high that reranking provides limited additional value.

On the other hand, reranking improved results for BM25-based full-text search implementa

tions by a moderate 2.81%, from 22.46% to 25.27% and for embeddings with full documents from

28.58% to 31.19%. This indicates that reranking may still provide a little value when the initial

retrieval ranking is less sophisticated, as is the case with traditional BM25 implementations.

5.4 Timing Implications

As noted in Section 4.2, the timing analysis presented here is descriptive, and results should be

interpreted as observed patterns rather than precise benchmarks.

A potential confounding factor in comparing retrieval methods is that different configurations

may return different numbers of documents, which could affect both accuracy and timing. To

control for this, the Pearson correlation between average content length and completion time was

analyzed (Figure 6). The analysis reveals no systematic relationship between document return

volume and performance differences across retrieval methods. The notably longer completion

times observed for the best-performing configurations (Meilisearch and Typesense with keyword

search) do not appear to be related to more documents being passed to the LLM in these

configurations.

A possible factor to explain these higher response times is infrastructure load. Because the

experiment relied on a university-hosted instance, other users accessing the same GPU resources

simultaneously may have introduced variability in response times.

The observed extended average response time for NarrativeQA (22 seconds with Meilisearch)

is consistent with the hypothesis that context size plays a role, as processing larger contexts

50

Discussion

would be expected to require more computational time, though this interpretation is subject

to the timing measurement limitations noted above.

In the observed measurements, retrieving documents from embeddings appeared faster

(roughly 200ms) than retrieving full documents from an external search engine like Meilisearch.

5.5 Failures of Chunk-Based Retrieval with Full-Text Search

The particularly poor performance of chunk-based retrieval with Meilisearch and Typesense

below the None baseline represents an important failure mode specific to full-text search engines.

When incorrect chunks are retrieved, they seem to actively mislead the LLM, resulting in worse

performance than providing no retrieval augmentation at all.

Notably, this problem does not affect embedding-based retrieval: chunks with embeddings

achieved 24.59% correctness. A plausible hypothesis for this difference relates to how each

retrieval method operates. Embedding-based search captures semantic meaning from text,

allowing smaller chunks to be matched based on conceptual similarity. Full-text search, however,

relies on keyword matching and requires sufficient surrounding context to ensure relevant terms

appear together in the indexed text. When documents are chunked too aggressively for full-text

search, individual chunks may lack the keyword density needed for accurate matching, leading

to retrieval of irrelevant passages. This explanation is consistent with the observed behavior

but has not been empirically validated through keyword density analysis.

For practical RAG implementations using full-text search, indexing complete documents

or larger passages appears preferable to fine-grained chunking strategies that work well with

embeddings.

5.6 Document Recall and Generation Failure

The document recall results reveal a distinction between retrieval failure and generation

failure. Even the Golden retriever, with perfect document recall, only achieves 69.40% answer

correctness. This indicates that approximately 30% of incorrect answers in the best retrieval

case result from generation failure rather than retrieval failure. The LLM fails to extract the

correct answer even when provided with the relevant document.

This finding has large implications for RAG system optimization. Improving retrieval quality

can only address errors caused by missing relevant documents. The substantial portion of errors

attributable to generation failure requires different interventions, such as improved prompting

strategies, better context presentation, or more capable generation models.

The relationship between document recall and answer correctness also differs markedly

between retrieval methods (see Figure 4). Embedding-based configurations show a flatter rela

tionship: even when document recall increases substantially (from approximately 7% to 40%),

the percentage of correct answers does not increase proportionally, remaining in the 17-25%

range. In contrast, full-text search engines (BM25-based SQLite, Meilisearch, Typesense) show

51

Discussion

a steeper, more consistent positive relationship, continuing to achieve higher correctness rates

as recall increases to 40%.

This pattern suggests that full-text search not only retrieves documents more effectively but

also retrieves them in a form more amenable to answer extraction. One possible explanation is

that full-text search always returns the full document and the used LLM is sufficiently capable

of extracting the correct facts required for the answer from the whole document. Embedding-

based retrieval may return semantically related documents where the answer is expressed in

different terms, requiring more sophisticated reasoning to connect the query to the answer.

The difference in recall between reranking configurations can differ because the reranker

operates on all documents returned by the initial retrieval stage and re-orders them based on

relevance scores before selecting only the top 𝑘 documents13. If the gold document was initially

retrieved but ranked outside the top 𝑘 positions, reranking may either promote it into the final

set, improving recall, or fail to do so. Conversely, if the gold document was in the top 10 before

reranking, reranking could potentially push it out if other documents (wrongly) score higher.

5.7 Retrieval Dependency per Dataset

When looking at the results for the retrieval of the None baseline, two distinct categories are

visible:

High baseline performance datasets (e.g., TOEFL-QA and Coursera) achieved around

20% correct answers without any retrieval, indicating that these questions may already be well-

represented in the LLMs training data or represent question types that the model handles well

inherently. These datasets show limited benefit from retrieval augmentation, as the relative

improvement is constrained by the already substantial baseline.

Low baseline performance datasets (e.g., MultiFieldQA with 1.65% None baseline)

demonstrate strong dependence on retrieval, with search engines providing substantial perfor

mance gains over the baseline. These represent scenarios where external knowledge is critical

for answering questions.

Of note here is that the dataset was originally filtered with GPT-4o but the experiment has

been run with the newer gpt-oss-120b. Both have different knowledge cutoff times, leading to

the conclusion that the latter model has more knowledge than GPT-4o.

TOEFL-QA achieved the highest performance with the Golden retriever at 88.89% correct

answers, though this must be interpreted in light of its already strong 19.60% None baseline.

Since the TOEFL-QA dataset tests for English understanding and text generation rather than

only QA performance [53], this indicates the strong results may be attributed to the advanced

linguistic abilities of the used gpt-oss-120b LLM. Current models demonstrate sufficient profi

ciency in English understanding to already perform well on this benchmark without requiring

retrieval, which could explain the observed high performance in the experimental results.

13In the experiment in this thesis, up to 10 documents were ultimatly returned

52

Discussion

MultiFieldQA demonstrates the best balance of high absolute performance (85.12% Golden,

73.55% best search engine) combined with low baseline performance (1.65%), indicating genuine

value added by retrieval.

Across datasets, Meilisearch and Typesense consistently appeared as top-performing search

engines, with keyword-based search generally outperforming other retrieval methods. The effec

tiveness of different configurations varied by dataset, suggesting that optimal retrieval strategies

may be task dependent.

5.8 Potential for Hybrid Retrieval

The overlap analysis in Section 4.5 reveals that different search engine configurations retrieve

different documents correctly. The low average Jaccard index of 0.230 indicates that combining

engines could improve overall retrieval performance. This complementary behavior suggests

that full-text search and embedding-based retrieval may capture different aspects of relevance,

making hybrid approaches attractive.

The theoretical upper bound shows that combining all configurations could correctly retrieve

documents for 89.4% of questions, compared to 56.25% for the best single configuration. While

achieving this theoretical maximum is unrealistic in practice, even partial combinations show

substantial potential gains. The highest-benefit pairings (exceeding 70%) combine methods

from different retrieval paradigms, often embedding-based methods with full-text search. This

becomes very clear when examining the top 30 combinations as shown in Table 7, the list is

dominated by combinations which include embedding-based retrieval methods.

This pattern is explained by the fundamental difference in how these methods operate.

Embedding-based search matches documents based on semantic similarity in vector space,

capturing conceptual relationships even when exact keywords differ. Full-text search relies on

keyword matching and term frequency, excelling when queries and documents share vocabulary.

When one method fails to retrieve the correct document, the other may succeed because it

operates on different matching principles.

Importantly, the heatmap in Figure 9 shows that not all combinations are beneficial. Most

pairwise combinations provide limited improvement, with many cells near zero. Arbitrary

combination of search engines is unlikely to improve results; instead, combinations should be

chosen deliberately to leverage complementary strengths. Full-text search with chunk retrieval

shows uniformly low benefit regardless of the pairing, consistent with its poor individual

performance.

5.9 Assessment and Recommendations

The optimal choice between full-text and semantic search methods depends a lot on the

characteristics of both the document corpus and expected query patterns.

Clear performance advantages for full-text search were shown across most tested datasets,

with particularly strong results observed when query preprocessing steps were added. Compet

53

Discussion

itive performance by semantic search using embeddings was exhibited only in specific contexts,

most notably in the TOEFL-QA dataset, where the advantage is explained by the requirement

for deeper semantic understanding of vague or ambiguous queries.

5.9.1 Trade-offs Between Accuracy and Efficiency

The results suggest a trade-off between retrieval quality and response time. Configurations

employing retrieval generally achieved higher accuracy but incurred increased latency in

the observed measurements. For MultiFieldQA, the observed 23-second increase in average

response time (from 9 to 32 seconds) when using retrieval with Meilisearch yielded substantial

accuracy improvements, suggesting that this trade-off may be worthwhile for accuracy-critical

applications. The appropriateness of this trade-off depends on the specific use case and latency

requirements.

5.9.2 Context-Dependent Recommendations

Based the results from the experiment, FTS should be used to implement search in a RAG

system when expected queries look for specific facts or concrete knowledge, and documents are

suitable for keyword-based full-text search. This is usually the case when searching for specific

keywords would yield relevant documents and consistent vocabulary is used in most of the

documents.

Because the semantic search alternative to full-text search approaches was outperformed most

of the time and with a wide margin across many different datasets, full-text search represents

a strong default choice for most practical applications of RAG, particularly those involving

factual queries and keyword-friendly document corpora.

On the other hand, embedding-based semantic search has advantages over full-text search

when queries are inherently vague or conceptual in nature. In these cases, semantic under

standing beyond surface-level keyword matching is required by the documents. This becomes

even more visible when a mismatch between search queries and the document corpus is present

and context and meaning are more important than exact term matching.

This pattern is illustrated clearly by the TOEFL-QA results, as semantic understanding over

keyword matching is favored by the dataset’s characteristics.

In any case, an important finding is that incorporating a query preprocessing step, such

as keyword generation or query reformulation, significantly improves retrieval performance.

Even when searching in a full-text search index with the user query directly produces results

similar to embedding-based approaches, the addition of preprocessing creates measurably better

outcomes.

5.9.3 Dataset-Specific Considerations

Performance varies considerably across different dataset types, highlighting the importance of

evaluating retrieval methods against the documents and queries that are used.

54

Discussion

For the best results, practitioners should analyze the structure, vocabulary, and content

organization of their specific document collection, then consider how users typically formulate

questions and what information needs drive those queries and choose a search engine setup

based on that. Comparing this to the datasets tested in the experiment of this thesis helps

identify analogous scenarios.

Ideally, based on the assessment of queries and documents, a small evaluation dataset should

be curated to validate performance for the use case, effectively re-running the experiment of

this thesis on a smaller scale. The results of the experiment can then be used to compare

multiple different implementations against each other to make an informed decision about the

architecture required.

The NarrativeQA dataset presents an edge case worth noting. Its combination of large

document sizes and complex narrative structure poses challenges for both retrieval paradigms.

This requires alternative approaches beyond the straightforward architecture that was tested

in this thesis.

5.9.4 Limitations and Caveats

These recommendations apply within the scope and constraints of the presented experimental

design.

5.9.4.1 Single Model Dependency

Importantly, all experiments were conducted using a single LLM (gpt-oss-120b) for generation,

query preprocessing, keyword extraction, and answer evaluation. The relative performance of

full-text search versus embedding-based retrieval may differ with other model families (e.g.,

Claude, Llama, Gemini), smaller or larger models, or models with different training data and

capabilities. Similarly, only one embedding model (Qwen3-4B) was tested for semantic search;

other embedding models such as OpenAI’s text-embedding may yield different results. The

findings reported here are therefore specific to this model configuration and may not generalize

to all RAG implementations without further validation.

5.9.4.2 Evaluation Methodology

The same model (gpt-oss-120b) was used for both answer generation and automated evaluation,

which could theoretically introduce systematic bias. However, the evaluation was conducted

in a stateless manner: each answer was evaluated independently without the model having

access to or context of other generated answers. The model received only the question, the

correct reference answer, and the generated answer to evaluate, with no information about

which retrieval method produced the answer or how other answers were rated. This design

mitigates concerns about self-preferential rating, as the evaluation model cannot identify its

own outputs or adjust ratings based on retrieval method.

The 84.7% agreement rate with manual labels provides empirical validation that the auto

mated evaluation produces reliable results despite using the same underlying model. Since the

55

Conclusion

stateless evaluation design excludes method-specific bias, actual measurement error is expected

to be random, which softens rather than inflates observed effect sizes. Nonetheless, using

separate model families for generation and evaluation in future work could provide additional

validation and reduce any potential for shared systematic blind spots in both generation and

evaluation.

5.10 Conclusion

While full-text search is strongly favored by the results in the majority of scenarios, the recurring

answer to “which method should be used?” remains: it depends. The dependence, however, is

systematic and predictable based on document corpus and query characteristics.

Within the scope examined here, the findings are sufficiently clear and interpretable to provide

actionable guidance for practitioners designing RAG systems with similar model configurations.

For most implementations, full-text search represents a robust default choice, with semantic

search reserved for scenarios where semantic understanding demonstrably outweighs the benefits

of keyword matching. Practitioners using different LLMs should validate these findings against

their specific model configuration before making architectural decisions.

6 Conclusion
This thesis investigated whether full-text search can serve as a viable alternative to embedding-

based retrieval in RAG systems. The motivation originated from the considerable infrastructure

complexity that embedding-based approaches introduce, including embedding model deploy

ment, vector database management, and similarity search mechanisms. Full-text search, by

contrast, offers a more straightforward implementation path where databases handle indexing

automatically without requiring external embedding pipelines.

To address this research question, an experiment was conducted using a multi-source dataset

comprising 6,284 questions across eleven different QA benchmarks. The dataset was originally

filtered for different research on Long-Context RAG using GPT-4o to identify questions that

cannot be answered from world knowledge alone, ensuring that retrieval is genuinely required.

Four primary search backends were evaluated: SQLite Full-Text Search with BM25, pgVector

for embedding-based semantic search, and the specialized full-text search engines Typesense

and Meilisearch. Each search engine was tested with different retriever architectures including

direct passthrough, LLM-based query rewriting, keyword generation, and chunk-based retrieval.

The gpt-oss-120b model served as both the generation model and for query preprocessing tasks.

6.1 Key Findings

The experimental results demonstrate that, within the tested configuration using gpt-oss-120b

for generation and Qwen3-4B for embeddings, full-text search can not only match but outperform

embedding-based retrieval. Meilisearch with keyword generation and reranking achieved the

56

Conclusion

highest overall correctness at 40.44%, compared to 31.19% for the best embedding-based

configuration (full-document retrieval with reranking).

Specialized full-text search databases consistently outperformed traditional BM25-based

implementations. Typesense and Meilisearch, which employ ranking algorithms beyond term

frequency metrics, both achieved 29.60% and 29.30% correctness with direct search compared

to 28.58% for embeddings (with full documents) and 25.27% for BM25-based SQLite Full-

Text Search. This suggests that modern search engine implementations provide meaningful

advantages for retrieval tasks, even when not further optimized.

Query preprocessing emerged as a critical factor for retrieval quality. Combining full-text

search with LLM-generated keywords significantly improved results across most configurations.

Embedding-based retrieval was also tested with equivalent keyword preprocessing but did not

benefit from it. Keyword-based embedding search achieved only 7.15% correctness compared

to 24.59% for direct chunk retrieval. This asymmetry indicates that the advantage of full-text

search with preprocessing stems from the fundamental suitability of keyword-based search to

leverage LLM-generated terms, rather than from an unfair comparison where only one method

received preprocessing.

Reranking with Jina Reranker v3, a state-of-the-art model on the BEIR benchmark, provided

only marginal improvements and in some cases degraded performance. For Meilisearch with

keyword search, reranking improved correctness by 1.26%. In certain dataset configurations,

such as MultiFieldQA, reranking actually decreased performance by 7.43%. Since these results

were obtained with a current best-in-class reranking model, they suggest that modern search

engines may already provide sufficiently effective ranking, limiting the potential gains from

additional reranking steps.

Performance varied considerably across datasets. MultiFieldQA achieved 73.55% correctness

with the best configuration, while NarrativeQA reached only 18.41%. The TOEFL-QA dataset

represented the sole exception where embeddings outperformed full-text search (65.00% vs.

46.62%), likely due to the semantic nature of language comprehension questions. These varia

tions underscore that optimal retrieval strategies depend on dataset characteristics including

document structure, query patterns, and the type of reasoning required.

Chunk-based retrieval with full-text search performed poorly, often falling below the no

retrieval baseline. This indicates that incorrect chunking strategies can actively mislead the

language model, resulting in worse performance than providing no retrieved context at all.

6.2 Future Work

The overlap analysis in Section 4.5 demonstrates substantial potential for hybrid retrieval

approaches. The highest-benefit pairings combine methods from different retrieval paradigms,

particularly embedding-based search with full-text search. This suggests that embedding-

based semantic matching and keyword-based full-text search capture complementary aspects

57

Conclusion

of relevance. Future work could investigate practical hybrid retrieval strategies that leverage

these complementary strengths without requiring exhaustive combination of all configurations.

Reranking did not yield the expected performance improvement, despite using Jina Reranker

v3, a state-of-the-art model. While this suggests the limitation lies in the fundamental

interaction between modern search engine ranking and reranking rather than model choice,

a systematic evaluation across multiple reranking models could confirm whether alternative

approaches might be more effective for specific dataset characteristics or search engine configu

rations. Additionally, analyzing whether gold documents are demoted by reranking could explain

the observed performance degradation in certain configurations.

The chunk sizes used in this experiment (max. 512 characters with 50 character overlap)

proved too small for effective full-text search. Future work could systematically test larger chunk

sizes (e.g., 2000-4000 characters) to identify whether a threshold exists where full-text search

on chunks becomes competitive with full-document retrieval. Such investigation could clarify

whether the observed chunk-based failure is specific to the chunk sizes tested or represents a

broader limitation, which could impact the relative performance comparison between retrieval

methods.

Ablating the inclusion of relevance scores in the generator prompt could quantify whether

heterogeneous scoring across search engines influences outcomes.

A further direction for future work is validating these findings across different model families.

This thesis used gpt-oss-120b exclusively for generation, query preprocessing, and evaluation.

Testing with other LLM families such as Claude, Llama, or Gemini would establish whether the

observed advantages of full-text search generalize beyond this specific model or are particular to

its characteristics. Similarly, evaluating alternative embedding models beyond Qwen3-4B could

reveal whether the performance gap between full-text search and semantic search varies with

embedding quality. Using different models for generation versus evaluation could also provide

additional validation of the automated evaluation methodology.

58

Appendix

A Appendix

A.1 Answer Prompt

The prompt used by the experiment implementation to answer questions:

Use the following information to assist the user:

{results_str}

You are an AI assistant that helps people find information. Only use the information

given to you.

Focus on directly providing the answer to the question. You don't need to explain

your answer at length, a very short explanation is sufficient.

Do not make up an answer.

If you do not know the answer to a question, respond by saying verbatim "I do not

know the answer to your question."

{results_str} is replaced with a concatenated string of the results with the text and score and

separated by ---. A result string can look like this (texts are shortened for brevity):

score: 0.88323

text: Alexander M. Patch American High School (also known as "Patch American High

School" or "Patch High School") was an English language high school on Patch Barracks

in Stuttgart, ...

score: 0.87303

text: List of NFL franchise post-season droughts Playoff Droughts 0Team0 Last earned

appearance in post-season Seasons Buffalo Bills ^ 1999 AFC Wild Card Playoffs 17

Cleveland Browns ^ 2002 AFC Wild Card Playoffs 14 Los Angeles Rams ^ 2004 NFC

Divisional ...

score: 0.6323

text: Houston Astros The Astros clinched their first division title as a member of

the American League West division, and first division title overall since 2001. ...

score: 0.559

text: Henry IV (11 November 1050 – 7 August 1106) was Holy Roman Emperor from 1084 to

1105, king of Germany from 1054 to 1105, king of Italy and Burgundy from 1056 to

1105, and duke of Bavaria from 1052 to 1054. ...

A.2 Query rewriting prompts

Both the Search Query and Keyword prompts are divided into a System prompt and user

message. They are implemented using the dspy Python library to simplify the implementation.

In both cases, the {user_query} placeholder is replaced at runtime with the input query.

I

Appendix

A.2.1 Search Query Prompt

The prompt that is used to rewrite the user query into a more suitable search query.

The system prompt looks like this:

Your input fields are:

1. `query` (str):

Your output fields are:

1. `output_query` (str):

All interactions will be structured in the following way, with the appropriate values

filled in.

[[## query ##]]

{query}

[[## output_query ##]]

{output_query}

[[## completed ##]]

In adhering to this structure, your objective is:

 Return a query for searching documents in a database that might contain the

answer to the query.

The user message looks like this:

[[## query ##]]

{user_query}

Respond with the corresponding output fields, starting with the field `[[##

output_query ##]]`, and then ending with the marker for `[[## completed ##]]`.

As an example, for a user query of Do both films Lifeforce (film) and Via Pony Express

have the directors that share the same nationality? the response might look like this:

[[## output_query ##]]

"Lifeforce (film) director nationality" OR "Via Pony Express director nationality"

[[## completed ##]]

A.2.2 Keyword Prompt

The Keyword prompt is used to create keywords for search based on the user query.

The system prompt looks like this:

Your input fields are:

1. `query` (str):

Your output fields are:

1. `keywords` (list[str]):

All interactions will be structured in the following way, with the appropriate values

filled in.

[[## query ##]]

II

Appendix

{query}

[[## keywords ##]]

{keywords} # note: the value you produce must adhere to the JSON schema:

{"type": "array", "items": {"type": "string"}}

[[## completed ##]]

In adhering to this structure, your objective is:

 Return a list of keywords for searching documents in a database that might

contain the answer to the query.

The user message looks like this:

[[## query ##]]

{user_query}

Respond with the corresponding output fields, starting with the field `[[## keywords

]]` (must be formatted as a valid Python list[str]), and then ending with the

marker for `[[## completed ##]]`.

As an example, for a user query of Do both films Lifeforce (film) and Via Pony Express

have the directors that share the same nationality? the response might look like this:

[[## keywords ##]]

["Lifeforce film director", "Via Pony Express director", "director nationality",

"Lifeforce director nationality", "Via Pony Express director nationality", "film

directors nationality comparison", "British director Lifeforce", "American director

Via Pony Express", "film director nationality Lifeforce", "film director nationality

Via Pony Express"]

[[## completed ##]]

A.3 Evaluation Prompt

This is the prompt that’s produced after optimizing it with dspy as outlined in Section 3.5. It

is divided into a System prompt and User message.

The System prompt:

Your input fields are:

1. `question` (str):

2. `correct_answer` (str):

3. `provided_answer` (str):

Your output fields are:

1. `correctness` (Literal['correct', 'partially_correct', 'incorrect']): ${reasoning}

All interactions will be structured in the following way, with the appropriate values

filled in.

[[## question ##]]

{question}

[[## correct_answer ##]]

III

Appendix

{correct_answer}

[[## provided_answer ##]]

{provided_answer}

[[## correctness ##]]

{correctness} # note: the value you produce must exactly match (no extra

characters) one of: correct; partially_correct; incorrect

[[## completed ##]]

In adhering to this structure, your objective is:

 Given the fields `question`, `correct_answer`, `provided_answer`, produce the

fields `correctness`.

The User message:

[[## question ##]]

{question}

[[## correct_answer ##]]

{correct_answer}

[[## provided_answer ##]]

{provided_answer}

The placeholders {question}, {correct_answer} and {provided_answer} are replaced with

appropriate values at runtime.

A potential user message and response might look like this:

[[## question ##]]

What may happen if the VR headset lenses are exposed to sunlight or strong light?

[[## correct_answer ##]]

Exposure to sunlight or strong light may cause permanent yellow spot damage on the

screen.

[[## provided_answer ##]]

Exposure to direct sunlight or strong light may cause permanent yellow spot damage on

the screen. Such screen damage is not covered by the warranty.

Assistant message:

[[## correctness ##]]

correct

[[## completed ##]]

IV

Appendix

A.4 Search Engine Results by Dataset

Column abbreviations:

• Eng. (Engine): Emb = Embeddings, FTS = Full-Text Search, Meili = Meilisearch, Type =

Typesense, Gold = Golden, None = No retrieval

• Ret. (Retriever): P = Passthrough, C = Chunk, K = Keyword, S = Search, F = Full Docs

• RR (Reranked): Y = Yes, N = No

• Retr., Compl., Resp.: Average retrieval, completion, and response times in seconds

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 73.8% 1.9% 75.7% 0.01 1.8 1.8

None P N 8.7% 0.6% 9.4% 0.00 0.9 0.9

N 8.4% 0.7% 9.1% 0.23 1.1 1.4C

Y 7.0% 0.9% 7.9% 0.36 1.5 1.9

N 19.4% 1.4% 20.8% 0.58 8.1 8.7F

Y 18.8% 0.9% 19.6% 35.68 7.3 43.0

N 4.5% 0.7% 5.2% 1.12 1.0 2.1K

Y 3.9% 0.8% 4.6% 1.71 1.2 2.9

N 7.0% 0.4% 7.4% 0.24 1.0 1.3

Emb

S

Y 4.5% 0.2% 4.8% 0.34 1.0 1.3

N 9.9% 0.6% 10.5% 0.00 0.9 0.9C

Y 9.8% 0.8% 10.5% 0.34 1.3 1.6

N 19.6% 0.6% 20.2% 2.35 10.0 12.4K

Y 18.8% 1.0% 19.8% 6.25 12.0 18.3

N 35.8% 1.1% 36.9% 0.14 4.3 4.5P

Y 40.9% 0.6% 41.5% 2.18 5.1 7.2

N 37.0% 0.6% 37.7% 1.69 5.0 6.7

FTS

S

Y 40.8% 0.9% 41.6% 3.34 5.0 8.4

N 0.2% 0.1% 0.4% 0.01 1.1 1.1C

Y 0.6% 0.0% 0.6% 0.11 1.8 1.9

N 56.0% 1.6% 57.6% 0.26 10.7 11.0K

Y 55.0% 1.2% 56.2% 4.41 34.6 39.1

N 43.3% 1.2% 44.5% 0.13 11.6 11.7P

Y 41.8% 1.2% 43.0% 3.60 11.6 15.2

N 58.5% 1.1% 59.6% 0.10 8.6 8.7

Meili

S

Y 58.9% 1.2% 60.1% 2.51 8.7 11.3

N 0.5% 0.0% 0.5% 0.22 1.0 1.2C

Y 0.2% 0.0% 0.2% 0.53 1.4 1.9

N 62.6% 1.5% 64.1% 0.84 8.8 9.6K

Y 57.1% 1.1% 58.2% 6.40 28.6 35.0

N 45.6% 0.9% 46.5% 0.36 4.4 4.8P

Y 44.6% 1.0% 45.6% 3.42 4.4 7.9

N 57.9% 1.0% 58.9% 0.22 4.3 4.6

Type

S

Y 56.2% 1.2% 57.5% 1.74 4.2 5.9

Table 8: 2WikiMultihopQA

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 37.0% 42.6% 79.6% 0.00 1.6 1.6

None P N 20.4% 46.3% 66.7% 0.00 1.2 1.2

N 24.1% 44.4% 68.5% 0.29 1.1 1.4C

Y 24.1% 35.2% 59.3% 0.35 1.7 2.1

N 35.2% 38.9% 74.1% 0.44 8.3 8.8F

Y 25.9% 42.6% 68.5% 18.51 7.2 25.7

N 7.4% 44.4% 51.9% 1.64 1.3 2.9K

Y 5.6% 35.2% 40.7% 2.25 1.4 3.7

N 20.4% 46.3% 66.7% 0.27 1.4 1.6

Emb

S

Y 18.5% 37.0% 55.6% 0.35 1.2 1.6

N 20.4% 40.7% 61.1% 0.01 1.2 1.2C

Y 22.2% 42.6% 64.8% 0.01 1.7 1.7

N 20.4% 50.0% 70.4% 1.38 6.8 8.2K

Y 22.2% 44.4% 66.7% 6.50 10.5 16.9

N 25.9% 42.6% 68.5% 0.01 1.2 1.3P

Y 22.2% 48.1% 70.4% 0.05 1.4 1.5

N 22.2% 42.6% 64.8% 1.30 1.4 2.7

FTS

S

Y 16.7% 42.6% 59.3% 1.04 1.6 2.6

N 11.1% 31.5% 42.6% 0.01 1.1 1.1C

Y 7.4% 31.5% 38.9% 0.11 1.8 1.9

N 31.5% 46.3% 77.8% 0.28 8.2 8.5K

Y 33.3% 42.6% 75.9% 4.03 23.7 27.7

N 13.0% 50.0% 63.0% 0.24 9.1 9.3P

Y 18.5% 46.3% 64.8% 4.35 9.2 13.6

N 20.4% 51.9% 72.2% 0.18 7.4 7.6

Meili

S

Y 22.2% 48.1% 70.4% 2.73 6.9 9.6

N 7.4% 29.6% 37.0% 0.41 1.1 1.5C

Y 5.6% 13.0% 18.5% 0.82 1.3 2.2

N 24.1% 48.1% 72.2% 0.80 7.8 8.6K

Y 35.2% 42.6% 77.8% 6.15 22.3 28.5

N 18.5% 46.3% 64.8% 1.12 3.5 4.6P

Y 16.7% 38.9% 55.6% 5.23 3.6 8.8

N 22.2% 40.7% 63.0% 0.37 2.0 2.4

Type

S

Y 24.1% 29.6% 53.7% 1.44 2.4 3.8

Table 9: Coursera

V

Appendix

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 85.4% 1.4% 86.7% 0.01 2.0 2.0

None P N 9.8% 0.9% 10.7% 0.00 1.3 1.3

N 21.8% 0.1% 21.9% 0.24 1.4 1.6C

Y 20.8% 0.4% 21.1% 0.36 1.9 2.2

N 31.9% 0.9% 32.8% 0.49 12.3 12.8F

Y 30.4% 0.8% 31.1% 24.75 10.8 35.6

N 3.0% 0.7% 3.7% 1.28 1.2 2.4K

Y 1.6% 0.6% 2.2% 1.89 1.4 3.3

N 12.0% 0.2% 12.3% 0.24 1.2 1.5

Emb

S

Y 11.0% 0.9% 11.9% 0.33 1.3 1.7

N 7.4% 0.7% 8.2% 0.00 1.3 1.3C

Y 8.9% 0.4% 9.2% 0.01 1.8 1.8

N 18.3% 1.4% 19.7% 2.90 11.8 14.7K

Y 16.9% 0.6% 17.5% 6.42 13.0 19.4

N 50.6% 1.4% 51.9% 0.05 4.8 4.9P

Y 51.5% 1.1% 52.6% 1.19 5.3 6.5

N 47.8% 1.0% 48.8% 1.72 4.9 6.6

FTS

S

Y 48.8% 0.4% 49.1% 2.94 4.9 7.9

N 11.4% 0.2% 11.6% 0.01 1.3 1.3C

Y 11.1% 0.8% 11.9% 0.10 2.0 2.1

N 47.6% 1.2% 48.8% 0.24 12.4 12.6K

Y 47.4% 2.0% 49.4% 3.90 43.2 47.1

N 44.9% 1.4% 46.2% 0.13 11.6 11.7P

Y 45.2% 1.8% 47.0% 3.54 11.6 15.2

N 50.8% 1.5% 52.3% 0.09 9.2 9.3

Meili

S

Y 57.1% 1.4% 58.5% 2.38 9.4 11.8

N 9.2% 0.7% 9.9% 0.22 1.0 1.3C

Y 8.9% 0.1% 9.0% 0.53 1.4 1.9

N 50.6% 0.5% 51.1% 0.85 10.8 11.7K

Y 42.0% 1.5% 43.5% 5.66 41.4 47.0

N 60.5% 1.9% 62.3% 0.33 4.8 5.1P

Y 62.4% 0.9% 63.2% 2.09 4.8 6.9

N 62.8% 0.9% 63.7% 0.12 4.2 4.3

Type

S

Y 64.5% 1.5% 66.0% 1.16 4.3 5.5

Table 10: HotpotQA

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 53.8% 13.9% 67.7% 0.00 1.5 1.5

None P N 1.9% 1.9% 3.8% 0.00 0.9 0.9

N 12.7% 8.2% 20.9% 0.23 1.2 1.5C

Y 12.0% 6.3% 18.4% 0.34 1.5 1.9

N 10.8% 5.1% 15.8% 0.50 4.8 5.3F

Y 17.1% 5.7% 22.8% 31.44 4.0 35.4

N 7.0% 7.6% 14.6% 1.70 1.1 2.8K

Y 4.4% 3.8% 8.2% 2.53 1.2 3.7

N 11.4% 7.0% 18.4% 0.24 1.1 1.4

Emb

S

Y 11.4% 8.9% 20.3% 0.31 1.1 1.4

N 5.1% 3.8% 8.9% 0.01 0.9 0.9C

Y 5.1% 2.5% 7.6% 0.03 1.2 1.3

N 10.8% 3.8% 14.6% 1.50 5.8 7.3K

Y 9.5% 5.1% 14.6% 10.74 7.1 17.9

N 7.0% 7.6% 14.6% 0.38 3.2 3.6P

Y 10.1% 6.3% 16.5% 5.20 3.6 8.8

N 5.7% 2.5% 8.2% 1.03 2.3 3.3

FTS

S

Y 11.4% 6.3% 17.7% 3.71 2.7 6.4

N 4.4% 1.9% 6.3% 0.01 1.0 1.0C

Y 5.7% 2.5% 8.2% 0.10 1.5 1.6

N 34.8% 14.6% 49.4% 0.30 8.2 8.5K

Y 38.0% 12.7% 50.6% 3.81 24.7 28.5

N 11.4% 3.8% 15.2% 0.28 6.3 6.6P

Y 12.0% 3.8% 15.8% 6.67 6.5 13.1

N 17.7% 10.8% 28.5% 0.16 7.4 7.6

Meili

S

Y 22.2% 12.7% 34.8% 3.58 7.5 11.1

N 3.8% 1.9% 5.7% 0.23 0.9 1.2C

Y 5.7% 1.3% 7.0% 0.51 1.2 1.7

N 32.9% 9.5% 42.4% 2.50 6.1 8.6K

Y 33.5% 12.7% 46.2% 10.52 16.6 27.2

N 10.8% 5.7% 16.5% 0.90 2.6 3.6P

Y 17.1% 5.1% 22.2% 8.90 3.2 12.1

N 14.6% 9.5% 24.1% 0.53 2.8 3.3

Type

S

Y 14.6% 10.8% 25.3% 4.34 3.0 7.3

Table 11: MultiDoc2Dial

VI

Appendix

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 85.1% 9.1% 94.2% 0.01 1.6 1.6

None P N 1.7% 0.0% 1.7% 0.00 0.7 0.7

N 33.9% 4.1% 38.0% 0.24 1.0 1.3C

Y 33.9% 5.8% 39.7% 0.40 1.4 1.8

N 34.7% 1.7% 36.4% 0.41 8.5 8.9F

Y 35.5% 1.7% 37.2% 22.40 6.8 29.2

N 4.1% 5.8% 9.9% 1.61 0.9 2.5K

Y 1.7% 5.0% 6.6% 2.66 1.0 3.7

N 14.9% 1.7% 16.5% 0.24 0.9 1.2

Emb

S

Y 14.9% 3.3% 18.2% 0.33 0.9 1.3

N 0.8% 0.0% 0.8% 0.01 0.8 0.8C

Y 0.8% 0.0% 0.8% 0.01 1.0 1.0

N 18.2% 2.5% 20.7% 1.61 6.9 8.5K

Y 19.0% 3.3% 22.3% 6.64 9.6 16.2

N 26.4% 2.5% 28.9% 0.09 4.0 4.1P

Y 30.6% 1.7% 32.2% 1.90 4.5 6.4

N 24.0% 0.8% 24.8% 0.93 3.5 4.4

FTS

S

Y 31.4% 2.5% 33.9% 2.14 3.8 6.0

N 1.7% 0.8% 2.5% 0.01 1.0 1.0C

Y 1.7% 0.8% 2.5% 0.11 1.5 1.6

N 73.6% 5.0% 78.5% 0.25 9.4 9.6K

Y 66.1% 7.4% 73.6% 3.43 28.6 32.0

N 35.5% 3.3% 38.8% 0.21 9.6 9.8P

Y 38.8% 2.5% 41.3% 4.47 9.9 14.3

N 52.1% 5.0% 57.0% 0.12 7.2 7.3

Meili

S

Y 51.2% 5.0% 56.2% 2.53 7.5 10.1

N 0.8% 0.0% 0.8% 0.12 0.8 1.0C

Y 0.8% 0.8% 1.7% 0.30 1.2 1.5

N 54.5% 2.5% 57.0% 1.20 7.5 8.7K

Y 55.4% 5.8% 61.2% 6.45 25.2 31.7

N 28.1% 4.1% 32.2% 0.63 4.2 4.8P

Y 32.2% 2.5% 34.7% 4.49 4.4 8.8

N 47.1% 5.0% 52.1% 0.29 3.3 3.6

Type

S

Y 47.9% 4.1% 52.1% 2.17 3.7 5.9

Table 12: MultiFieldQA

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 58.1% 2.1% 60.2% 0.01 2.7 2.7

None P N 8.4% 1.2% 9.6% 0.00 1.4 1.4

N 21.1% 1.2% 22.3% 0.22 1.7 1.9C

Y 21.2% 1.1% 22.4% 0.35 2.3 2.6

N 34.4% 2.0% 36.4% 0.51 15.2 15.7F

Y 34.6% 2.1% 36.8% 25.01 13.5 38.5

N 6.9% 1.6% 8.5% 1.46 1.4 2.8K

Y 5.4% 1.6% 7.0% 2.52 1.6 4.2

N 18.5% 1.0% 19.5% 0.23 1.5 1.7

Emb

S

Y 16.6% 1.4% 18.0% 0.32 1.5 1.8

N 7.0% 1.6% 8.6% 0.00 1.4 1.4C

Y 7.9% 1.4% 9.2% 0.01 1.9 1.9

N 19.7% 2.3% 22.1% 3.10 12.2 15.3K

Y 22.4% 2.9% 25.2% 6.72 13.2 19.9

N 24.8% 2.3% 27.1% 0.05 4.0 4.0P

Y 28.4% 2.0% 30.4% 1.23 4.7 5.9

N 29.3% 1.8% 31.2% 2.31 6.7 9.0

FTS

S

Y 32.5% 1.9% 34.4% 3.87 6.4 10.3

N 4.1% 0.1% 4.2% 0.01 1.3 1.3C

Y 3.6% 0.5% 4.1% 0.10 2.3 2.4

N 34.5% 3.2% 37.7% 0.25 14.0 14.2K

Y 37.4% 3.5% 40.9% 4.78 34.0 38.7

N 31.4% 2.8% 34.3% 0.17 12.2 12.3P

Y 32.9% 2.9% 35.8% 4.16 12.5 16.7

N 36.3% 3.2% 39.5% 0.12 11.6 11.7

Meili

S

Y 40.5% 1.6% 42.1% 2.71 11.6 14.3

N 1.7% 0.2% 2.0% 0.31 1.1 1.5C

Y 1.8% 0.1% 1.9% 0.70 1.5 2.2

N 36.9% 2.5% 39.3% 1.00 12.8 13.8K

Y 37.1% 2.9% 40.0% 5.69 47.2 52.9

N 33.7% 2.5% 36.1% 0.68 5.2 5.9P

Y 34.8% 2.2% 37.0% 3.51 5.4 8.9

N 38.3% 2.1% 40.4% 0.22 6.8 7.0

Type

S

Y 40.0% 1.8% 41.8% 2.10 7.1 9.2

Table 13: MuSiQue

VII

Appendix

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 43.2% 5.3% 48.6% 0.03 2.4 2.4

None P N 1.4% 0.0% 1.4% 0.00 0.8 0.8

N 7.5% 2.3% 9.9% 0.23 1.1 1.3C

Y 7.1% 1.8% 8.9% 0.30 1.5 1.8

N 9.8% 1.1% 10.9% 0.50 7.5 8.0F

Y 13.8% 1.1% 14.9% 38.11 6.5 44.6

N 1.6% 1.2% 2.8% 1.35 0.9 2.3K

Y 1.0% 1.5% 2.5% 2.69 1.1 3.8

N 3.0% 1.1% 4.1% 0.23 1.0 1.2

Emb

S

Y 2.8% 1.2% 4.0% 0.46 1.0 1.4

N 1.6% 0.5% 2.1% 0.00 0.8 0.8C

Y 1.5% 0.0% 1.5% 0.01 1.0 1.0

N 1.7% 0.2% 2.0% 1.65 8.1 9.8K

Y 4.1% 0.5% 4.6% 6.45 9.1 15.6

N 6.7% 0.9% 7.6% 0.16 4.3 4.5P

Y 12.9% 2.2% 15.1% 3.39 6.0 9.4

N 4.8% 0.9% 5.7% 1.22 3.5 4.7

FTS

S

Y 8.6% 1.8% 10.4% 4.29 4.4 8.7

N 2.8% 0.2% 3.1% 0.01 1.0 1.0C

Y 2.6% 0.2% 2.9% 0.10 1.7 1.8

N 17.2% 3.5% 20.7% 0.35 9.2 9.5K

Y 17.8% 2.6% 20.4% 4.85 17.2 22.1

N 18.4% 2.1% 20.5% 0.23 8.5 8.7P

Y 17.8% 3.8% 21.5% 5.94 9.5 15.4

N 14.8% 2.1% 16.9% 0.16 7.6 7.8

Meili

S

Y 16.8% 1.9% 18.6% 3.77 8.6 12.4

N 1.8% 0.0% 1.8% 0.08 0.9 1.0C

Y 2.0% 0.0% 2.0% 0.24 1.3 1.6

N 12.7% 2.0% 14.7% 1.49 7.2 8.7K

Y 14.8% 2.6% 17.4% 9.39 25.3 34.7

N 15.3% 2.4% 17.7% 0.58 4.9 5.5P

Y 16.4% 2.5% 18.9% 6.93 5.3 12.3

N 14.4% 1.7% 16.2% 0.43 4.0 4.5

Type

S

Y 13.4% 1.5% 14.9% 4.51 4.8 9.3

Table 14: NarrativeQA

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 66.4% 4.0% 70.4% 0.01 1.8 1.8

None P N 13.7% 3.7% 17.4% 0.00 1.0 1.0

N 31.9% 6.3% 38.2% 0.21 1.2 1.4C

Y 31.9% 5.4% 37.3% 0.30 1.6 1.9

N 47.6% 5.4% 53.0% 0.30 13.5 13.8F

Y 48.1% 5.7% 53.8% 10.09 12.0 22.1

N 5.7% 3.1% 8.8% 1.34 0.9 2.2K

Y 7.4% 2.8% 10.3% 2.60 1.1 3.7

N 27.9% 3.1% 31.1% 0.24 1.1 1.3

Emb

S

Y 24.5% 4.0% 28.5% 0.32 1.1 1.4

N 11.7% 2.3% 14.0% 0.00 1.0 1.0C

Y 12.3% 2.8% 15.1% 0.01 1.3 1.3

N 17.4% 3.4% 20.8% 1.65 9.1 10.8K

Y 18.8% 3.7% 22.5% 5.43 11.7 17.1

N 28.5% 3.7% 32.2% 0.12 8.1 8.2P

Y 38.5% 5.1% 43.6% 3.35 9.1 12.5

N 28.2% 3.7% 31.9% 1.04 6.0 7.0

FTS

S

Y 31.3% 2.8% 34.2% 3.64 7.2 10.9

N 4.8% 1.1% 6.0% 0.01 0.9 0.9C

Y 5.4% 1.7% 7.1% 0.11 1.5 1.6

N 49.0% 6.3% 55.3% 0.28 8.3 8.6K

Y 51.9% 5.7% 57.5% 3.92 13.7 17.6

N 35.3% 4.3% 39.6% 0.17 10.5 10.7P

Y 37.6% 5.7% 43.3% 4.37 11.2 15.6

N 41.6% 4.8% 46.4% 0.15 9.9 10.1

Meili

S

Y 44.7% 4.3% 49.0% 3.50 10.5 14.0

N 2.8% 0.6% 3.4% 0.11 0.8 0.9C

Y 3.7% 0.3% 4.0% 0.30 1.1 1.4

N 41.0% 5.7% 46.7% 1.04 8.5 9.5K

Y 47.9% 5.4% 53.3% 6.57 33.4 40.0

N 35.9% 3.7% 39.6% 0.41 7.8 8.2P

Y 35.6% 4.6% 40.2% 5.93 8.4 14.3

N 35.6% 4.8% 40.5% 0.29 6.2 6.5

Type

S

Y 34.5% 4.3% 38.7% 3.24 6.8 10.0

Table 15: Naturalquestion

VIII

Appendix

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 68.9% 15.9% 84.8% 0.00 1.6 1.6

None P N 0.2% 0.1% 0.4% 0.00 0.7 0.7

N 17.3% 9.1% 26.5% 0.21 1.2 1.4C

Y 17.6% 9.1% 26.8% 0.33 1.6 1.9

N 21.2% 7.1% 28.4% 0.40 10.1 10.5F

Y 22.0% 9.0% 31.0% 13.48 8.7 22.2

N 5.7% 3.8% 9.5% 1.60 1.0 2.6K

Y 5.5% 3.2% 8.8% 2.91 1.2 4.1

N 13.2% 6.7% 19.9% 0.22 1.0 1.2

Emb

S

Y 12.8% 6.1% 18.9% 0.32 1.1 1.4

N 2.1% 0.5% 2.6% 0.01 0.8 0.8C

Y 1.9% 0.8% 2.6% 0.02 1.1 1.1

N 10.7% 5.4% 16.1% 1.29 7.7 9.0K

Y 13.9% 6.1% 20.0% 6.27 13.4 19.6

N 14.6% 5.6% 20.2% 0.10 6.3 6.4P

Y 15.6% 6.0% 21.6% 2.40 6.9 9.3

N 13.3% 6.3% 19.6% 0.98 5.1 6.1

FTS

S

Y 12.8% 6.1% 18.9% 2.90 5.4 8.3

N 6.6% 4.1% 10.7% 0.01 1.4 1.4C

Y 6.8% 4.4% 11.1% 0.09 2.1 2.2

N 25.9% 10.0% 35.9% 0.16 7.5 7.6K

Y 26.6% 10.2% 36.9% 2.93 8.4 11.4

N 19.0% 7.4% 26.5% 0.12 10.3 10.4P

Y 20.5% 8.2% 28.7% 3.48 10.4 13.9

N 18.8% 8.8% 27.6% 0.07 7.3 7.4

Meili

S

Y 18.9% 7.2% 26.1% 2.13 7.1 9.3

N 6.1% 2.4% 8.5% 0.07 1.1 1.2C

Y 6.5% 2.8% 9.2% 0.22 1.5 1.7

N 23.0% 8.7% 31.7% 0.46 7.8 8.3K

Y 24.8% 7.5% 32.2% 3.78 20.9 24.7

N 16.8% 7.2% 24.0% 0.28 6.8 7.1P

Y 18.5% 7.0% 25.5% 3.90 7.0 10.9

N 19.8% 7.4% 27.2% 0.16 4.6 4.8

Type

S

Y 17.8% 7.0% 24.8% 1.80 4.7 6.5

Table 16: QASPER

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 71.8% 0.7% 72.5% 0.01 1.6 1.6

None P N 4.3% 0.0% 4.3% 0.00 0.8 0.8

N 31.1% 0.1% 31.2% 0.23 1.2 1.4C

Y 29.6% 0.5% 30.1% 0.30 1.7 2.0

N 23.6% 0.1% 23.8% 0.57 6.2 6.8F

Y 28.9% 0.2% 29.1% 32.06 5.8 37.8

N 14.7% 0.1% 14.8% 1.61 1.0 2.6K

Y 15.1% 0.1% 15.2% 2.70 1.2 3.9

N 17.6% 0.1% 17.8% 0.26 1.2 1.5

Emb

S

Y 16.5% 0.1% 16.6% 0.33 1.0 1.4

N 4.9% 0.0% 4.9% 0.01 0.8 0.8C

Y 5.9% 0.1% 6.0% 0.01 1.1 1.1

N 11.0% 0.5% 11.5% 1.59 6.0 7.6K

Y 14.2% 0.6% 14.9% 8.32 22.1 30.4

N 5.6% 0.0% 5.6% 0.02 0.9 0.9P

Y 6.8% 0.2% 7.0% 0.30 1.1 1.4

N 7.8% 0.1% 8.0% 1.15 1.2 2.3

FTS

S

Y 8.0% 0.0% 8.0% 2.03 1.4 3.4

N 3.9% 0.4% 4.3% 0.01 0.9 0.9C

Y 5.1% 0.0% 5.1% 0.10 1.4 1.5

N 40.2% 0.4% 40.6% 0.38 9.1 9.5K

Y 44.4% 0.1% 44.5% 4.10 11.5 15.6

N 28.7% 0.4% 29.0% 0.25 7.3 7.5P

Y 28.5% 0.1% 28.6% 6.08 7.5 13.5

N 30.3% 0.4% 30.6% 0.12 5.8 6.0

Meili

S

Y 33.6% 0.5% 34.1% 3.33 6.3 9.6

N 3.6% 0.0% 3.6% 0.28 0.8 1.1C

Y 4.2% 0.1% 4.4% 0.64 1.2 1.8

N 32.2% 0.5% 32.7% 1.84 6.5 8.3K

Y 33.1% 0.4% 33.5% 9.99 20.5 30.5

N 16.8% 0.2% 17.0% 1.43 2.6 4.0P

Y 17.9% 0.2% 18.1% 7.29 2.8 10.0

N 24.4% 0.5% 24.9% 0.41 2.4 2.8

Type

S

Y 23.1% 0.4% 23.5% 3.25 2.6 5.9

Table 17: QuALTY

IX

Appendix

E
n
g
.

R
e
t.

R
R

%
 C

o
r.

%
 P

a
r.

%
 C

+
P

R
e
tr

.

C
o
m

p
l.

R
e
sp

.

Gold P N 88.9% 7.2% 96.1% 0.00 1.1 1.1

None P N 19.6% 3.1% 22.7% 0.00 0.8 0.8

N 63.0% 5.9% 68.9% 0.22 1.2 1.4C

Y 62.5% 6.1% 68.6% 0.30 1.6 1.9

N 53.6% 5.1% 58.8% 0.51 5.5 6.1F

Y 65.0% 5.8% 70.8% 22.86 5.2 28.0

N 22.0% 4.7% 26.7% 1.50 1.0 2.5K

Y 18.9% 4.0% 22.9% 2.50 1.1 3.6

N 52.2% 4.9% 57.1% 0.23 1.2 1.5

Emb

S

Y 52.6% 5.4% 58.0% 0.32 1.1 1.4

N 20.2% 3.2% 23.5% 0.01 0.8 0.8C

Y 19.9% 2.9% 22.8% 0.01 1.1 1.1

N 21.6% 3.4% 25.0% 1.64 5.0 6.7K

Y 21.9% 3.5% 25.4% 7.95 18.8 26.8

N 19.0% 3.6% 22.6% 0.00 0.9 0.9P

Y 17.5% 3.8% 21.2% 0.01 1.0 1.0

N 20.3% 3.4% 23.7% 1.13 1.1 2.2

FTS

S

Y 19.4% 2.9% 22.2% 2.40 1.4 3.8

N 1.9% 0.2% 2.1% 0.01 0.7 0.7C

Y 2.9% 0.4% 3.2% 0.10 1.3 1.4

N 45.2% 5.6% 50.8% 0.33 7.0 7.3K

Y 46.6% 6.4% 53.0% 4.42 13.4 17.8

N 20.6% 3.0% 23.6% 0.28 5.2 5.5P

Y 20.4% 3.0% 23.4% 7.96 4.8 12.8

N 28.5% 3.9% 32.3% 0.17 6.0 6.2

Meili

S

Y 31.4% 4.6% 36.0% 4.56 6.3 10.9

N 1.4% 0.2% 1.6% 0.30 0.8 1.1C

Y 1.8% 0.4% 2.1% 0.68 1.1 1.7

N 41.2% 5.4% 46.6% 1.79 6.3 8.0K

Y 45.6% 5.0% 50.6% 10.54 20.1 30.6

N 20.7% 3.9% 24.6% 2.06 3.1 5.2P

Y 20.0% 4.1% 24.1% 7.13 3.3 10.4

N 25.0% 3.9% 28.8% 0.53 2.0 2.5

Type

S

Y 24.5% 3.5% 28.0% 3.65 2.7 6.3

Table 18: TOEFL-QA

X

Appendix

A.5 Search Engine Hyperparameters

This section lists the effective document-processing and ranking settings that affect retrieval

results in the experiment implementation. In most cases, default settings were used. Only a

small number of settings were explicitly set by the implementation (listed below).

• Explicit (non-default or implementation-defined) settings:

‣ Top-k: k = 10 for all search engines and retriever variants.

‣ No dataset filtering was applied at query time (all queries run against the full combined

corpus).

‣ SQLite FTS query normalization: lowercase + extract Unicode word tokens via regex \w+.

‣ Chunking for chunk indices/collections: max 512 characters, 50 characters overlap, prefer

sentence boundaries.

‣ pgvector: cosine distance search over halfvec(2560) embeddings with an HNSW index

(without explicit HNSW parameter overrides).

• SQLite Full-Text Search (FTS5 + BM25):

‣ Index schema (full documents): CREATE VIRTUAL TABLE content_fts USING fts5(content,

content_id);

‣ Index schema (chunks): CREATE VIRTUAL TABLE content_fts_chunks USING fts5(chunk,

content_id UNINDEXED, chunk_index UNINDEXED, dataset UNINDEXED);

‣ Query preprocessing: the query is converted into a whitespace-separated list of lowercase

Unicode word tokens using the regex \w+ (i.e., punctuation is removed).

‣ Tokenizer/stopwords/stemming/synonyms: no explicit tokenizer, stopword list, stemming,

or synonym configuration was applied. This means the defaults from the engine were used.

‣ Ranking: results are ordered by the FTS5 built-in rank column (default BM25 ranking),

ascending.

• pgVector (PostgreSQL + pgvector):

‣ Docker image: pgvector/pgvector:pg18-trixie

‣ Reported Version: PostgreSQL 18.0 (Debian 18.0-1.pgdg13+3) on x86_64-pc-linux-gnu,

compiled by gcc (Debian 14.2.0-19) 14.2.0, 64-bit

‣ pgVector version: 0.8.1

‣ Embedding model: Qwen3-4B embeddings with 2,560 dimensions; stored as halfvec(2560).

‣ Similarity metric: cosine distance (<=> operator).

‣ Approximate Nearest Neighbor (ANN) index: CREATE INDEX ... USING hnsw (embedding

halfvec_cosine_ops).

‣ HNSW parameters (m, ef_construction, ef_search): not explicitly set in the implemen

tation (engine defaults for the used pgvector version).

• Typesense:

‣ Docker image: typesense/typesense:29.0

‣ Version: 29.0

XI

Appendix

‣ Schema (full documents): content (string), dataset (string, facet), content_id (int32)

‣ Schema (chunks): chunk (string), dataset (string, facet), content_id (int32), chunk_index

(int32)

‣ Query parameters: q = <query>, query_by = content (or chunk), per_page = 10

‣ Tokenization/stopwords/stemming/synonyms and ranking settings: no custom configura

tion was applied, using the defaults.

• Meilisearch:

‣ Docker image: getmeili/meilisearch:v1.22.3

‣ Version: 1.22.3, commit c36a3239ca387ae662e13ebea697919ca04e5c75

‣ Index setup: primary key id; documents contain content (or chunk), dataset, content_id

‣ Query parameters: q = <query>, limit = 10

‣ Tokenization/stopwords/stemming/synonyms: no custom configuration was applied (en

gine defaults).

‣ Ranking: Meilisearch default ranking rules were used (no custom ranking rule order).

XII

List of Figures

B List of Figures
Figure 1 A general definition of a RAG System, combining documents 𝐷 and a user query 𝑞

with a retriever 𝑅 and a generator 𝐺 to produce an answer to a query 𝑎. ⁠4

Figure 2 Based on the RAG definition in Figure 1, this shows the version used in the

experiment in this thesis, adding a search engine which the retriever uses along with

a search strategy to retrieve documents. ⁠22

Figure 3 The best embedding-based and best Full-Text search approaches with their %

Correct, as shown in Table 5. ⁠34

Figure 4 The relationship between document recall and % correct. Each point in the diagram

represents a search engine configuration, colored by search engine type and

distinguished by shape. Golden and None baselines are excluded. ⁠36

Figure 5 The number of retrieved documents vs. the completion time in seconds for the

Typesense configuration with keyword search and reranking. ⁠37

Figure 6 Pearson correlation between average content length and average completion time

per retrieval configuration. Content length is defined as the sum of character counts

across all documents used to answer a question. Chunk-based retrieval

configurations, including embedding-based approaches, are excluded because

character counts reflect full document lengths rather than the subset of text

contained in retrieved chunks. ⁠38

Figure 7 The performance per dataset for the overall best retrieval configuration as shown in

Table 3: Meilisearch with keyword search reranked. ⁠43

Figure 8 The performance difference from % Correct between Golden and best-performing

configuration, per dataset. ⁠44

Figure 9 Benefit percentage heatmap showing potential gain from combining pairs of search

engines. Abbreviations: Emb=Embeddings, FTS=Full-Text Search,

Meili=Meilisearch, Type=Typesense, Chk=Chunk, Kwd=Keyword,

Pass=Passthrough, Srch=Search, Full=Full Document, R=Reranked. ⁠47

XIII

List of Tables

C List of Tables
Table 1 Overview of the original datasets as outlined in [2]: ‘The column “T” represents

dataset type with values “K” for “Knowledge”, “R” for “reasoning”, and “C” for

“reading comprehension”. […] We also report number of questions in each set (# Q),

number and percentage of questions retained after filtering (# Kept and % Kept)

out questions needing no context[…]’. “Avg Len” is the average size of the context

that is provided to the model to answer the questions from each dataset in

tokens. ⁠19

Table 2 Number of questions per dataset before and after filtering. ⁠22

Table 3 Performance per search engine in all run configurations. Values marked in dark

green are the best overall, values in light green are the best per search engine,

values marked dark red are the worst overall, values in light red are the worst per

search engine - for configurations except Golden and None. For Doc Recall, %

Correct, % Partial, % Correct + Partial, higher is better, for average retrieval time,

average completion time, and average response time, lower is better. ⁠29

Table 4 Summary per dataset across all run configurations. Doc Recall shows the average

percentage of questions where the gold document was retrieved. Values marked in

dark green are the best overall, values in light green are the 2nd best overall, values

marked dark red are the worst overall, values in light red are the 2nd worst overall.

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for

average retrieval time, average completion time, and average response time, lower is

better. ⁠30

Table 5 Results for the best Full-Text Search configuration (One of BM25-based SQLite

Full-Text Search, Meilisearch or Typesense) vs. the best embedding-based

configuration. Doc Recall shows the percentage of questions where the gold

document was retrieved. Values marked in dark green are the best overall, values in

light green are the best per search engine, values marked dark red are the worst

overall, values in light red are the worst per search engine - for configurations

except Golden and None. For Doc Recall, % Correct, % Partial, % Correct +

Partial, higher is better, for average retrieval time, average completion time, and

average response time, lower is better. ⁠33

Table 6 The top 3 Search engines with the highest % Correct grouped per dataset,

including the Golden and None results for reference. Doc Recall shows the

percentage of questions where the gold document was retrieved. Values marked in

dark green are the best overall, values in light green are the 2nd best overall, values

marked dark red are the worst overall, values in light red are the 2nd worst overall.

For Doc Recall, % Correct, % Partial, % Correct + Partial, higher is better, for

XIV

List of Tables

average retrieval time, average completion time, and average response time, lower is

better. Marked values do not include the Golden and None results. ⁠40

Table 7 Top 30 search engine combinations ranked by potential retrieval benefit. Overlap

shows questions where both engines retrieved the correct document. Exclusive

shows questions where only one of the two engines retrieved the correct document.

Benefit percentage indicates improvement over the better single engine. ⁠46

Table 8 2WikiMultihopQA . ⁠V

Table 9 Coursera . ⁠V

Table 10 HotpotQA . ⁠VI

Table 11 MultiDoc2Dial . ⁠VI

Table 12 MultiFieldQA . ⁠VII

Table 13 MuSiQue . ⁠VII

Table 14 NarrativeQA . ⁠VIII

Table 15 Naturalquestion . ⁠VIII

Table 16 QASPER . ⁠IX

Table 17 QuALTY . ⁠IX

Table 18 TOEFL-QA . ⁠X

XV

List of Acronyms

D List of Acronyms
ANN: Approximate Nearest Neighbor
ASR: Automatic Speech Recognition
ASR-MT-TTS: Automatic Speech Recognition - Machine Translation - Text-to-Speech
RAG: Retrieval Augmented Generation
LLM: Large Language Model
NLP: Natural Language Processing
BERT: Bidirectional encoder representations from transformers
BM25: Best Matching 25
HNSW: Hierarchical Navigable Small World
PRF: Probabilistic Relevance Framework
QA: Question Answering
FTS: Full-Text Search

XVI

Bibliography

E Bibliography
[1] S. E. Robertson and K. S. Jones, “Relevance weighting of search terms,” Journal of the

American Society for Information Science, vol. 27, no. 3, pp. 129–146, 1976, doi: https://

doi.org/10.1002/asi.4630270302.

[2] Xinze Li, Yixin Cao, Yubo Ma, and Aixin Sun, “Long Context vs. RAG for LLMs: An

Evaluation and Revisits,” Dec. 27, 2024. [Online]. Available: https://arxiv.org/abs/2501.

01880

[3] Patrick Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks,” Apr. 12, 2021. [Online]. Available: https://arxiv.org/abs/2005.11401

[4] Yunfan Gao et al., “Retrieval-Augmented Generation for Large Language Models: A

Survey,” Mar. 27, 2024. [Online]. Available: https://arxiv.org/abs/2312.10997

[5] Panda Smith, “Build a search engine, not a vector DB.” Accessed: Sept. 05, 2025. [Online].

Available: https://blog.elicit.com/search-vs-vector-db/

[6] Arvind Neelakantan et al., “Text and Code Embeddings by Contrastive Pre-Training,”

Jan. 24, 2022. [Online]. Available: https://arxiv.org/abs/2201.10005

[7] Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar, “Nomic

Embed: Training a Reproducible Long Context Text Embedder,” Feb. 03, 2025. [Online].

Available: https://arxiv.org/abs/2402.01613

[8] Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar, “Nomic

Embed: Training a Reproducible Long Context Text Embedder,” Feb. 2025. [Online].

Available: https://arxiv.org/abs/2402.01613

[9] Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro, Iryna Gurevych, Nikolai Rozanov,

and Goran Glavaš, “Common Sense or World Knowledge? Investigating Adapter-Based

Knowledge Injection into Pretrained Transformers,” Oct. 11, 2020. [Online]. Available:

https://arxiv.org/abs/2005.11787

[10] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang, “An Empirical

Study of Catastrophic Forgetting in Large Language Models During Continual Fine-

tuning.” [Online]. Available: https://arxiv.org/abs/2308.08747

[11] Ruize Wang et al., “K-ADAPTER: Infusing Knowledge into Pre-Trained Models with

Adapters,” Dec. 28, 2020. [Online]. Available: arxiv:2002.01808v5

[12] Oded Ovadia, Menachem Brief, Moshik Mishaeli, and Oren Elisha, “Fine-Tuning or

Retrieval? Comparing Knowledge Injection in LLMs,” Jan. 30, 2024. [Online]. Available:

https://arxiv.org/abs/2312.05934

[13] Tianjun Zhang et al., “RAFT: Adapting Language Model to Domain Specific RAG,” June

05, 2024. [Online]. Available: https://arxiv.org/abs/2403.10131v2

[14] Sebastian Borgeaud et al., “Improving language models by retrieving from trillions of

tokens,” Feb. 07, 2022. [Online]. Available: https://arxiv.org/abs/2112.04426

XVII

https://doi.org/https://doi.org/10.1002/asi.4630270302
https://doi.org/https://doi.org/10.1002/asi.4630270302
https://arxiv.org/abs/2501.01880
https://arxiv.org/abs/2501.01880
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2312.10997
https://blog.elicit.com/search-vs-vector-db/
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2005.11787
https://arxiv.org/abs/2308.08747
arxiv:2002.01808v5
https://arxiv.org/abs/2312.05934
https://arxiv.org/abs/2403.10131v2
https://arxiv.org/abs/2112.04426

Bibliography

[15] “Introducing Contextual Retrieval,” Sept. 19, 2024. [Online]. Available: https://www.

anthropic.com/news/contextual-retrieval

[16] Timo Schick et al., “Toolformer: Language Models Can Teach Themselves to Use Tools,”

Feb. 09, 2023. [Online]. Available: https://arxiv.org/abs/2302.04761

[17] Shunyu Yao et al., “REACT: SYNERGIZING REASONING AND ACTING IN LAN

GUAGE MODELS,” Mar. 10, 2023. [Online]. Available: https://arxiv.org/abs/2210.03629

[18] Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang, “LIGHTRAG: SIMPLE

AND FAST RETRIEVAL-AUGMENTED GENERATION,” Oct. 08, 2024. [Online].

Available: https://arxiv.org/abs/2410.05779

[19] Masoomali Fatehkia, Ji Kim Lucas, and Sanjay Chawla, “T-RAG: LESSONS FROM THE

LLM TRENCHES,” June 06, 2024. [Online]. Available: https://arxiv.org/abs/2402.07483

[20] Zahra Sepasdar, Sushant Gautam, Cise Midoglu, Michael A. Riegler, and Pål Halvorsen,

“Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study,” Sept.

26, 2024. [Online]. Available: https://arxiv.org/abs/2409.17580

[21] Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su, “Hip

poRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models,” Jan.

14, 2025. [Online]. Available: https://arxiv.org/abs/2405.14831

[22] Zhengbao Jiang et al., “Active Retrieval Augmented Generation,” Oct. 22, 2023. [Online].

Available: https://arxiv.org/abs/2305.06983

[23] Hervé Déjean, “Let your LLM generate a few tokens and you will reduce the need for

retrieval,” Dec. 16, 2024. [Online]. Available: https://arxiv.org/abs/2412.11536

[24] Brian J Chan, Chao-Ting Chen, Jui-Hung Cheng, and Hen-Hsen Huang, “Don't Do RAG:

When Cache-Augmented Generation is All You Need for Knowledge Tasks,” Feb. 23, 2025.

[Online]. Available: https://arxiv.org/abs/2412.15605v2

[25] Alexandria Leto, Cecilia Aguerrebere, Ishwar Bhati, Mariano Tepper, Ted Willke, and

Vy Ai Vo, “Toward Optimal Search and Retrieval for RAG,” Nov. 11, 2024. [Online].

Available: https://arxiv.org/abs/2411.07396

[26] Sumit Soman and Sujoy Roychowdhury, “OBSERVATIONS ON BUILDING RAG

SYSTEMS FOR TECHNICAL DOCUMENTS,” Mar. 31, 2024. [Online]. Available:

arxiv:2404.00657v1

[27] Orion Weller, Benjamin Van Durme, Dawn Lawrie, Ashwin Paranjape, Yuhao Zhang,

and Jack Hessel, “Promptriever: Instruction-Trained Retrievers Can Be Prompted Like

Language Models,” Sept. 17, 2024. [Online]. Available: https://arxiv.org/abs/2409.11136

[28] Yue Yu et al., “RankRAG: Unifying Context Ranking with Retrieval-Augmented Gener

ation in LLMS,” July 02, 2024. [Online]. Available: https://arxiv.org/abs/2407.02485

[29] Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling, “Corrective Retrieval Augmented

Generation,” Oct. 07, 2024. [Online]. Available: https://arxiv.org/abs/2401.15884

XVIII

https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/news/contextual-retrieval
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2410.05779
https://arxiv.org/abs/2402.07483
https://arxiv.org/abs/2409.17580
https://arxiv.org/abs/2405.14831
https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2412.11536
https://arxiv.org/abs/2412.15605v2
https://arxiv.org/abs/2411.07396
arxiv:2404.00657v1
https://arxiv.org/abs/2409.11136
https://arxiv.org/abs/2407.02485
https://arxiv.org/abs/2401.15884

Bibliography

[30] Xin Zhang et al., “mGTE: Generalized Long-Context Text Representation and Reranking

Models for Multilingual Text Retrieval,” Nov. 12, 2024.

[31] Vladimir Blagojevic, “Enhancing RAG Pipelines in Haystack: Introducing DiversityRanker

and LostInTheMiddleRanker,” Aug. 2023.

[32] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi, “SELF-

RAG: LEARNING TO RETRIEVE, GENERATE, AND CRITIQUE THROUGH SELF-

REFLECTION,” Oct. 17, 2023. [Online]. Available: https://arxiv.org/abs/2310.11511

[33] Yuan Xia, Jingbo Zhou, Zhenhui Shi, Jun Chen, and Haifeng Huang, “Improving Retrieval

Augmented Language Model with Self-Reasoning,” Dec. 19, 2024. [Online]. Available:

https://arxiv.org/abs/2407.19813

[34] Siran Li, Linus Stenzel, Carsten Eickhoff, and Seyed Ali Bahrainian, “Enhancing Retrieval-

Augmented Generation: A Study of Best Practices,” Jan. 13, 2025. [Online]. Available:

https://arxiv.org/abs/2501.07391

[35] Zekun Xi et al., “OmniThink: Expanding Knowledge Boundaries in Machine Writing

through Thinking,” Feb. 20, 2025. [Online]. Available: https://arxiv.org/abs/2501.09751

v2

[36] Zijun Yao et al., “SEAKR: Self-aware Knowledge Retrieval for Adaptive Retrieval Aug

mented Generation,” June 27, 2024. [Online]. Available: https://arxiv.org/abs/2406.19215

v1

[37] Stephen Robertson and Hugo Zaragoza, “The Probabilistic Relevance Framework: BM25

and Beyond,” 2009.

[38] Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei, “AGENTIC RE

TRIEVAL-AUGMENTED GENERATION: A SURVEY ON AGENTIC RAG,” Feb. 04,

2025. [Online]. Available: https://arxiv.org/abs/2501.09136

[39] Nathan J. Anderson, Caleb Wilson, and Stephen D. Richardson, “Lingua: Addressing

Scenarios for Live Interpretation and Automatic Dubbing,” Sept. 12, 2022.

[40] Robert Friel, Masha Belyi, and Atindriyo Sanyal, “RAGBench: Explainable Benchmark for

Retrieval-Augmented Generation Systems,” June 25, 2024. [Online]. Available: https://

arxiv.org/abs/2407.11005

[41] Daniel Fleischer, Moshe Berchansky, Moshe Wasserblat, and Peter Izsak, “RAG Foundry:

A Framework for Enhancing LLMs for Retrieval Augmented Generation,” Aug. 05, 2024.

[Online]. Available: https://arxiv.org/abs/2408.02545

[42] Satyapriya Krishna et al., “Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-

Augmented Generation,” Jan. 24, 2025. [Online]. Available: https://arxiv.org/abs/2409.

12941

XIX

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2407.19813
https://arxiv.org/abs/2501.07391
https://arxiv.org/abs/2501.09751v2
https://arxiv.org/abs/2501.09751v2
https://arxiv.org/abs/2406.19215v1
https://arxiv.org/abs/2406.19215v1
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2407.11005
https://arxiv.org/abs/2407.11005
https://arxiv.org/abs/2408.02545
https://arxiv.org/abs/2409.12941
https://arxiv.org/abs/2409.12941

Bibliography

[43] T. Kwiatkowski et al., “Natural Questions: A Benchmark for Question Answering

Research,” Transactions of the Association for Computational Linguistics, vol. 7, pp. 453–

466, 2019, doi: 10.1162/tacl_a_00276.

[44] X. Ho, A.-K. Duong Nguyen, S. Sugawara, and A. Aizawa, “Constructing A Multi-hop

QA Dataset for Comprehensive Evaluation of Reasoning Steps,” in Proceedings of the 28th

International Conference on Computational Linguistics, D. Scott, N. Bel, and C. Zong,

Eds., Barcelona, Spain (Online): International Committee on Computational Linguistics,

2020, pp. 6609–6625. doi: 10.18653/v1/2020.coling-main.580.

[45] Z. Yang et al., “HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question

Answering,” in Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds., Brussels,

Belgium: Association for Computational Linguistics, 2018, pp. 2369–2380. doi: 10.18653/

v1/D18-1259.

[46] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “♫ MuSiQue: Multihop

Questions via Single-hop Question Composition,” Transactions of the Association for

Computational Linguistics, vol. 10, pp. 539–554, 2022, doi: 10.1162/tacl_a_00475.

[47] Y. Bai et al., “LongBench: A Bilingual, Multitask Benchmark for Long Context Under

standing,” in Proceedings of the 62nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), L.-W. Ku, A. Martins, and V. Srikumar, Eds.,

Bangkok, Thailand: Association for Computational Linguistics, 2024, pp. 3119–3137. doi:

10.18653/v1/2024.acl-long.172.

[48] T. Kočiský et al., “The NarrativeQA Reading Comprehension Challenge,” Transactions

of the Association for Computational Linguistics, vol. 6, pp. 317–328, 2018, doi: 10.1162/

tacl_a_00023.

[49] P. Dasigi, K. Lo, I. Beltagy, A. Cohan, N. A. Smith, and M. Gardner, “A Dataset of Infor

mation-Seeking Questions and Answers Anchored in Research Papers,” in Proceedings of

the 2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, K. Toutanova, A. Rumshisky, L. Zettlemoyer,

D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.,

Online: Association for Computational Linguistics, 2021, pp. 4599–4610. doi: 10.18653/

v1/2021.naacl-main.365.

[50] R. Y. Pang et al., “QuALITY: Question Answering with Long Input Texts, Yes!,” in

Proceedings of the 2022 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, M. Carpuat, M.-C. de

Marneffe, and I. V. Meza Ruiz, Eds., Seattle, United States: Association for Computational

Linguistics, 2022, pp. 5336–5358. doi: 10.18653/v1/2022.naacl-main.391.

[51] C. Wang et al., “NovelQA: Benchmarking Question Answering on Documents Exceeding

200K Tokens.” [Online]. Available: https://arxiv.org/abs/2403.12766

XX

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2022.naacl-main.391
https://arxiv.org/abs/2403.12766

Bibliography

[52] S. Feng, S. S. Patel, H. Wan, and S. Joshi, “MultiDoc2Dial: Modeling Dialogues Grounded

in Multiple Documents,” in Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, Association for Computational Linguistics, 2021, pp. 6162–

6176. doi: 10.18653/v1/2021.emnlp-main.498.

[53] B.-H. Tseng, S.-S. Shen, H.-Y. Lee, and L.-S. Lee, “Towards machine comprehension

of spoken content: Initial TOEFL listening comprehension test by machine,” in INTER­

SPEECH, 2016.

[54] C. An et al., “L-Eval: Instituting Standardized Evaluation for Long Context Language

Models,” in Proceedings of the 62nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), L.-W. Ku, A. Martins, and V. Srikumar, Eds.,

Bangkok, Thailand: Association for Computational Linguistics, 2024, pp. 14388–14411.

doi: 10.18653/v1/2024.acl-long.776.

[55] “gpt-oss-120b & gpt-oss-20b Model Card,” Aug. 05, 2025. [Online]. Available: https://

arxiv.org/pdf/2508.10925

[56] “GPT-4o System Card,” Aug. 08, 2024. [Online]. Available: https://cdn.openai.com/gpt-

4o-system-card.pdf

[57] K. Enevoldsen et al., “MMTEB: Massive Multilingual Text Embedding Benchmark,” arXiv

preprint arXiv:2502.13595, 2025, doi: 10.48550/arXiv.2502.13595.

[58] Feng Wang, Yuqing Li, and Han Xiao, “jina-reranker-v3: Last but Not Late Interaction

for Listwise Document Reranking,” Oct. 06, 2025. [Online]. Available: https://arxiv.org/

abs/2509.25085

[59] “SQLite FTS5 Extension.” Accessed: Nov. 12, 2025. [Online]. Available: https://sqlite.org/

fts5.html

[60] “BM25.” Accessed: Nov. 12, 2025. [Online]. Available: https://docs.paradedb.com/

documentation/concepts/bm25

[61] “Ranking and reranking.” Accessed: Nov. 12, 2025. [Online]. Available: https://www.

elastic.co/docs/solutions/search/ranking

[62] “BM25.” Accessed: Nov. 12, 2025. [Online]. Available: https://docs.singlestore.com/db/v

9.0/reference/sql-reference/full-text-search-functions/bm-25/

[63] “Return the Score Details - Atlas - MongoDB Docs.” Accessed: Nov. 12, 2025. [Online].

Available: https://www.mongodb.com/docs/atlas/atlas-search/score/get-details/#bm25

[64] “pgvector/pgvector: Open-source vector similarity search for Postgres.” [Online]. Available:

https://github.com/pgvector/pgvector

[65] “Ranking and Relevance.” Accessed: Nov. 12, 2025. [Online]. Available: https://typesense.

org/docs/guide/ranking-and-relevance.html#text-match-score-type

[66] “Built-in ranking rules.” Accessed: Nov. 12, 2025. [Online]. Available: https://www.

meilisearch.com/docs/learn/relevancy/ranking_rules

XXI

https://doi.org/10.18653/v1/2021.emnlp-main.498
https://doi.org/10.18653/v1/2024.acl-long.776
https://arxiv.org/pdf/2508.10925
https://arxiv.org/pdf/2508.10925
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://doi.org/10.48550/arXiv.2502.13595
https://arxiv.org/abs/2509.25085
https://arxiv.org/abs/2509.25085
https://sqlite.org/fts5.html
https://sqlite.org/fts5.html
https://docs.paradedb.com/documentation/concepts/bm25
https://docs.paradedb.com/documentation/concepts/bm25
https://www.elastic.co/docs/solutions/search/ranking
https://www.elastic.co/docs/solutions/search/ranking
https://docs.singlestore.com/db/v9.0/reference/sql-reference/full-text-search-functions/bm-25/
https://docs.singlestore.com/db/v9.0/reference/sql-reference/full-text-search-functions/bm-25/
https://www.mongodb.com/docs/atlas/atlas-search/score/get-details/#bm25
https://github.com/pgvector/pgvector
https://typesense.org/docs/guide/ranking-and-relevance.html#text-match-score-type
https://typesense.org/docs/guide/ranking-and-relevance.html#text-match-score-type
https://www.meilisearch.com/docs/learn/relevancy/ranking_rules
https://www.meilisearch.com/docs/learn/relevancy/ranking_rules

Bibliography

[67] “Relevancy.” Accessed: Nov. 12, 2025. [Online]. Available: https://www.meilisearch.com/

docs/learn/relevancy/relevancy

[68] N. F. Liu et al., “Lost in the Middle: How Language Models Use Long Contexts,” Trans­

actions of the Association for Computational Linguistics, vol. 12, pp. 157–173, 2024, doi:

10.1162/tacl_a_00638.

[69] L. Zheng et al., “Judging LLM-as-a-judge with MT-bench and Chatbot Arena,” in Pro­

ceedings of the 37th International Conference on Neural Information Processing Systems,

Red Hook, NY, USA: Curran Associates Inc., 2023.

[70] K. Opsahl-Ong et al., “Optimizing Instructions and Demonstrations for Multi-Stage

Language Model Programs,” in Proceedings of the 2024 Conference on Empirical Methods

in Natural Language Processing, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami,

Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 9340–9366. doi:

10.18653/v1/2024.emnlp-main.525.

[71] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical

Data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977, doi: 10.2307/2529310.

XXII

https://www.meilisearch.com/docs/learn/relevancy/relevancy
https://www.meilisearch.com/docs/learn/relevancy/relevancy
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.2307/2529310

	1 Introduction
	2 Related Work
	2.1 RAG origins
	2.2 Architecture of a system
	2.3 Embeddings
	2.4 Injecting knowledge into an through fine-tuning and related approaches
	2.5 Improving the Retrieval Process
	2.5.1 Tool use
	2.5.2 Using graph data structures
	2.5.3 Reducing the need for retrieval
	2.5.4 Building better retrieval methods
	2.5.5 Reranking
	2.5.6 Iteratively improving results

	2.6 Search approaches and algorithms
	2.7 Benchmarking systems
	2.8 Conclusion

	3 Method and Experiment Architecture
	3.1 Dataset Construction and Filtering
	3.2 Model Selection
	3.3 Experiment Architecture
	3.3.1 Search Engines
	3.3.2 Retriever Types
	3.3.3 Chunking Strategy

	3.4 Reranking
	3.5 Evaluation
	3.6 Experimental Infrastructure
	3.7 Key Considerations and Limitations

	4 Results
	4.1 Overall Performance Across Search Engines
	4.1.1 Best Embedding vs. Full-Text Search
	4.1.2 Statistical Significance
	4.1.3 Document Recall

	4.2 Timing Analysis
	4.3 Performance by Dataset
	4.4 Top 3 Configurations by Dataset
	4.4.1 Baseline Performance With Perfect Retrieval
	4.4.2 Baseline Performance Without Retrieval

	4.5 Overlap in Correctly Retrieved Documents Between Search Engines
	4.6 Conclusion

	5 Discussion
	5.1 Full-Text Search Performance Compared to Embeddings
	5.2 Dataset-Specific Performance Variation
	5.3 Reranking Effects
	5.4 Timing Implications
	5.5 Failures of Chunk-Based Retrieval with Full-Text Search
	5.6 Document Recall and Generation Failure
	5.7 Retrieval Dependency per Dataset
	5.8 Potential for Hybrid Retrieval
	5.9 Assessment and Recommendations
	5.9.1 Trade-offs Between Accuracy and Efficiency
	5.9.2 Context-Dependent Recommendations
	5.9.3 Dataset-Specific Considerations
	5.9.4 Limitations and Caveats
	5.9.4.1 Single Model Dependency
	5.9.4.2 Evaluation Methodology

	5.10 Conclusion

	6 Conclusion
	6.1 Key Findings
	6.2 Future Work

	A Appendix
	A.1 Answer Prompt
	A.2 Query rewriting prompts
	A.2.1 Search Query Prompt
	A.2.2 Keyword Prompt

	A.3 Evaluation Prompt
	A.4 Search Engine Results by Dataset
	A.5 Search Engine Hyperparameters

	B List of Figures
	C List of Tables
	D List of Acronyms
	E Bibliography

